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Abstract

Some properties of empirical random sets and possibilis-
tic histograms related to strong probabilistic compati-
bility are described. We will discuss possibilistic his-
tograms and the possibility of occurence, the nature of
probability distributions which are strongly stochasti-
cally compatible with a given possibility distribution,
and the derivation of frequency distributions from em-
pirical random sets.

1 Introduction

Possibility theory [3] is an alternative information theory
to that based on probability. Although possibility theory
is logically independent of probability theory, they are
related: both arise in Dempster-Shafer evidence theory
as fuzzy measures defined on random sets; and their dis-
tributions are both fuzzy sets. So possibility theory is a
component of a broader Generalized Information Theory
(GIT), which includes all of these fields [12].

Zadeh’s concept of probabilistic-possibilistic consis-
tency [16] is an example of the kind of principle which
can be brought to bear on the problem of deriving a
coherent, synthetic GIT. In order to accommodate the
desired properties of possibilistic semantics, Joslyn has
extended this idea to a principle of strong compatibility
(or consistency) [7].

Another example of a synthetic principle is the use
of random sets—originally developed as a branch of
stochastic geometry [L0]—to provide a broad, unifying
context within which to develop GIT [4]. Joslyn has also
used random sets to ground possibility theory on an em-
pirical basis by developing methods for the measurement
of possibility distributions, and in particular possibilistic
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histograms, based on empirical random sets, in turn de-
rived from the collection of set-valued observations [5, 8].

Some properties of empirical random sets and possi-
bilistic histograms are described related to strong prob-
abilistic compatibility. After introducing the fundamen-
tals of possibilistic mathematics and measurement, we
will discuss possibilistic histograms and the possibility of
occurence, the nature of probability distributions which
are strongly stochastically compatible with a given pos-
sibility distribution, and the derivation of frequency dis-
tributions from empirical random sets.

2 Mathematical Preliminaries

Assume a finite universe  := {w;},1 <i < n.

2.1 Possibilistic Mathematics

The function m: 2 +— [0,1] is an evidence function
(otherwise known as a basic probability assignment)
when m(0) = 0 and Y ,-qm(A) = 1. Denote a ran-
dom set generated from an evidence function as

S = {{4;,m;) : my; >0}, (1)
where (-} is a vector, A; C Q, m; := m(4;), and

1<j<N:=|8<2"—1.

Denote the focal set of S as F := {4;
has core and support

CS) = () 4,

A EF

cmy; >0} S

respectively, and is consistent if C(S) # 0.
The plausibility and belief measures on YA C 2 are

PI(A) := Z mj, Bel(A4) := Z m;,

A LA A;CA

where A — B denotes AN B = (. Pl and Bel are gen-
erally non-additive fuzzy measures [15], and are dual,
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in that YA C Q,Bel(A) = 1 — PI(A). In general only
plausibility will be considered below. The plausibility
assignment (otherwise known as the one-point cov-

(Pl;) := (Pl({w; })), where

erage function) of § is Pl =

> mj.

Ajdw,

When VA; € F, |
Pr(A) = Pl( ) =

measure with

;| = 1, then § is specific, and
Bel(A) is an additive probability
VA B CQ,

Pr(AU B) = Pr(A) + Pr(B) — Pr(AN B). (2)

Then § = (p;) = Plis a probability distribution
with additive normalization and operator

Zpizl, =Y

w;EA

It is well known that statistical entropy is the canoni-
cal measure of information in probability theory [13]. In
general, the probability distribution with maximal en-
tropy is the maximally uninformative probability
distribution denoted p*, and results when Vi, p; = 1/n
[9]. Given a random set S, then the Maximum En-
tropy Principle (MEP) [12] has been applied [2] to derive
a canonical probability distribution p® approximating
S, replacing each subset evidence value m(A;) with the
MEP uniform probability distribution over its members,

so that
=3 5

Aj3w

Vwe, p° |A| (3)

S is consonant (F is a nest) when (without loss of
generality for ordering, and letting Aq := 0) A;11 C
A;. Now II(A) := PI(A) is a possibility measure and
n(A) := Bel(4) is a necessity measure.! As Pr is
additive, so II is maximal:

VA, BCQ, M(AUB)=T1(A)VI(B),
where V is the maximum operator. @ = {(m;) = Pl is
now a possibility distribution with maximal normal-

1zation
\m=1 (4)

and operator

\/m

1Since results for necessity are dual to those of possibility, only
possibility will be discussed in the sequel.

()

The maximally uninformative possibility distri-
bution denoted 7 has maximal nonspecificity [12], and
results when Vi, m; = 1 [9].

The condition (4) for Pltobea possibility distribution
is actually achieved whenever S is even consistent (which
is required when § is consonant). When § is consistent
but not consonant, then even though Plis a possibil-
ity distribution by (4), Pl is not a possibility measure
II. Then there is a unique possibilistic approximation
IT* to Pl achieved by invoking (5) on = [9]. If S is not
even consistent, then there are well-justified possibilistic
normalization methods [6, 14] such as “consistent trans-
formations” [6], which select certain elements or regions
of m to be “elevated” to be in a core.

The following result will be useful below:

Corollary 6 If S is consistent, then m(4) > 0 —
PI(A) =

Proof: Fix A C Q. Since S is consistent, C(S) =
Na,er 4 # 0, so that VA;,, A;, € F, A;, # A;,. Since
m(A) > 0, therefore A € F, and so VA; € F, A + A;.
Therefore PI(A4) = ZAMA m; = ZA]E}- m; = 1. [ |

2.2 Possibilistic-Probabilistic Compati-
bility

This paper concerns situations where probability and

possibility are considered together. Measures of

compatibility’between a probability and a possibility

distribution are available [1]. The best known of these

is Zadeh’s measure [16]

where vz (p, 7) = 1 indicates maximal compatibility and
vz(p,®) = A, 7 minimal compatibility, and A is the
minimum operator.

We now introduce some ideas from probabilistic mea-
surement. Assume a counting function ¢: 2 — W such
that ¢; := ¢(w;) is the count of the occurrences of w; in
a statistical record. Then a frequency distribution is
a function f: € +— [0, 1] where

flwi) = fi:=

Zcz

Denote the vector j?:: (fi). The frequency measure
is a function P:2% [0, 1] where YA C Q,

=Dk

w;EA

2The term used in the literature is actually “consistency”,
so to avoid confusion with random set consistency, we will use
“compatibility”.



j?is anatural probability distribution with normalization
Y. Ji =1, and P is a natural probability measure as in
(2).

Many methods are available to convert a given proba-
bility distribution to a possibility distribution, and vice
versa [13]. One of the most prominent is the maximum
normalization or ratio scale method [11]. Given a fre-
quency distribution f, then let #™:€2 +— [0, 1] be a pos-
sibility distribution where

7" (wy) =7 = o

‘ Viei

It follows [9] that

m _ fi T
LV B

We also have the following result [9].

Uy

Proposition 8 If vz (f, ™) = 1 then f: p" and T =

—x

T

Joslyn has also considered the semantics of possibility
theory from a number of different perspectives, including
the contexts of graduated, physical, and modal concep-
tual frameworks [9]. In particular, he has considered
what an appropriate relation between probabilistic and
possibilistic representations of the same problem domain
would be [7], and has asserted the following strong prin-
ciple.

Principle 9 (Strong Probability-Possibility Com-
patibility (ppc)) For a given probability measure Pr
and possibility measure Il to be strongly compatbile,
then

VACQ, Pr(A) >0« l(A).

It follows that Pr(A) = 0 «— II(4) < 1, and
n(A) > 0— Pr(4) >0, n(A)=0— Pr(4) =0.
At the distribution level it follows that

Yw e, pw)>0<r(w)=1,

Finally, if the distributions p and ¥ are strongly com-
patibile, then vz (¢, @) = 1.

Note that the PPc (9) is not a definition or a theorem,
but is rather a principle asserted as a semantic criterion,
and is thus necessarily extra-theoretical. Detailed argu-
ments justifying this position are offered elsewhere [7, 9].
Suffice it here to say that the PPC states that something
having non-zero probability is likely, and therefore given
sufficient time eventual, and therefore equivalent to its
being completely possible. Conversely, a properly possi-
ble event (0 < T(A) < 1) must be of probability mea-
sure zero, and probability zero may or may not indicate
proper possibility.

plw) =0 = w(w) < 1.

2.3 Possibilistic Measurement

Measurement methods for possibility distributions have
developed by Joslyn [5, 8, 9].  To derive a possibility
distribution from an empirical source, it is necessary to
observe subsets B, C Q,1 < s < M denoted as a vector
B = (Bs). The set of observed subsets produced by
eliminating any duplicates in B is an empirical focal
set F¥ .= {A;}, where N < M and V4; € F¥ 3B, €
é, B, = Aj, and inclusion of an element in a vector is
defined as appropriate.

Denoting the number of times that a given set By =
Aj occurs in B as C(4A;), then the set-frequency func-
tion is

.

mP: FP 0,1,  mP(4)) = =—— =Cj/M,
! ZA]'E]:E C] !

(10)

where C; = C(A;). mP is clearly an evidence func-

tion, which in turn generates an empirical random
set denoted ST according to (1). If F¥ is a disjoint
class, then 8¥ generates a probability distribution on
an equivalence class on U(F). But if 8% is consistent,
then the empirical possibility distribution is

ZA'Bw Cj
7(w) = Z mf = ]T
Ajaw

(11)

Possibility distributions derived according to (11) can
be properly described as possibilistic histograms,
similar to ordinary (stochastic) histograms, but gen-
erated from possibly overlapping interval observations,
and thus governed by the mathematics of random sets.
In the sequel it will be assumed that S is consistent, ei-
ther naturally or as the result of a normalization method,
and thus = from (11) is a possibility distribution.

An example is shown in Fig. 1. On the left, four ob-
served intervals are shown. The bottom two occur with
frequency 1/2, while each of the upper two have fre-
quency 1/4. Together they determine S¥. The step
function on the right is the possibilistic histogram 7 de-
rived from (11). Tt can be briefly stated in vector form
as

F=(1/4,1,1/2,1/4)

where the values are taken on each of the piecewise con-
stant segments

([1,1.5),[1.5,2],(2,3.5),(3.5,4]), (12)
of the step function, as shown in the figure. Also shown
in the figure are two examples of the variety of well-
justified continuous approximations to a possibilistic his-
togram [8]. This approach to possibilistic measurement
generalizes to n intervals and to the continuous case.
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Figure 1: (Left) Four example observed intervals. (Right) The possibilistic histogram and two continuous approx-

1mations.

3 Strongly Compatible Proba-
bility Distributions

From the natural language perspective, the primary se-
mantic criterion for possibility is that the occurrence of
an event requires maximal (unitary) possibility. In a
possibilistic histogram the occurring events are exactly
those B, € B which have been observed. So this condi-
tion is easily met by possibilistic histograms.

Corollary 13 If FE is consistent,
B, 1(B,) = 1.

Proof: Fix B;. Then C(B;) > 1,80 m(B;) > 1/M >
0. The result follows from the corrolary (6) and the
consistency of F¥. ]

then VB, €

Probability distributions which conform to the ppcC
with a possibilistic histogram should also be considered.
Under the PPC (9), it is necessary that p(w) = 0 wherever
7(w) < 1, that is Yw € C(F¥). In the example in Fig. 1,
that would yield p > 0 only on the interval C(w) =
[1.5,2). No further information would be provided by
7, and so the MEP would yield the uniform probability
density
2

re={ 7

This result makes complete sense in the context of the
nature of subset measurements. Given a consistent set
of observed intervals, if they are all to be believed then
all that can be said is that the event actually happened
somewhere in the core. There the possibility is unitary,
and by the ppC the probability is positive. But there is
no further information about the likelihood of the event
being anywhere particular inside the core, thus requiring
the maximally uninformative probability distribution p*.

The fact that Vw € U(7),w € C(7),0 < 7 < 1 indi-
cates that 1t is somewhat possible for another observa-
tion, perhaps at another time, to be found somewhere
between the core and the edge of the support, but not

w €[1.5,2)

elsewhere

completely possible; since nothing can be said to have
been actually observed there yet. Thus the subset mea-
surements give no likelithood information about the oc-
currence of an w in this region, and by the ppc p = 0
there.

If 87 is inconsistent, and thus a consistent approxi-
mation must be made, then for a focus wy € Q, C(8¥) =
{wp}, and so p will be a Dirac-delta function at wp.

4 Frequency Distributions from
Empirical Random Sets

It is also interesting to see how a purely “probabilistic”
treatment would approach set-statistics. In particular,
it is possible to use other counting methods to derive
an ordinary frequency distribution ffrom the counts
attached to each observed subset.

4.1 Frequency Analysis of Subset Mea-

surements

In order to simplify the problem, consider the case of
two overlapping observations on a discrete universe. Let
Q = {a,b, ¢}, and assume two observations By = {a,b}
and By = {b,c}, so that C'(B,) = C(Bz2) = 1.

On a pure frequency analysis at the level of the subsets
Bs, then Pr(B;) = Pr(B;) = 1/2. Under the assumption
that Pr should have an additive probability distribution
p: 2 — [0, 1], then

pla) + pb) + plc) = 1
pla) + p(b) = 1/2
pb) + ple) = 1/2

which has the solution p(a) = p(¢) = 1/2,p(b) = 0. This
is entirely unsatisfactory, and maximally incompatible
with the possibilistic results above: it eliminates proba-
bility exactly on b, the point where there is the most evi-
dence, and where in the possibilistic histogram () = 1.



Only slightly more complicated cases, such as the exam-
ple in Fig. 1, reveal that this method frequently does
not yield any feasible solutions for non-negative proba-
bilities.

4.2 Subset to Element Counts

Another approach is to translate the counts on subsets
into counts on elements, thus establishing a mapping
C +— c. There are a number of ways in which that could
be done.

4.2.1 Duplicated Counts

We could say that a nonspecific observation is really an
observation of every element of the subset. Then each
observation of a subset B, would contribute one element
count for every w € B,. Then the overall element count
is

Vw €Q, cw)= Y Gy (14)
Ajaw
Corollary 15
_ c(w)
flw) = Srers GIAT
Proof:
ow) c(w)
M) @ T Tenran G
_ o cdw)
T aern Cil4l
|

By this method, the example in Fig. 1 yields the fre-
quency distribution

F=12/9,4/9,2/9,1/9).

similarly valued over the piecewise constant segments in
(12). Note that this is identical to 7 for elements having
the same numerator, but the denominator changed from
4 (which is 3~ C}) to 9 (which is Y~ e(w) = >~ C}|45]).
In fact, the effect of this count duplication method is
to establish a maximum normalized ratio scale between

7 and f.

Theorem 16 Given a consistent F¥ with a frequency
distribution f determined by (14), then Vw € Q,

Proof: From the possibilistic histogram formula (11)

and (14),
YweQ, Mnr(w)= Z C; = c(w).
Ajdw
Therefore from the corollary (15),
ew) _ Maw) _ 7(w)
Yiwea ®w)  YeaMmw) Y eqmw)

The second result follows from the ratio scale frequency
conversion (7). ]

flw) =

Thus the disadvantages of duplicating counts like this
are clear. First, frequency additivity is violated because

ZC(W): Z ZCkZCj~

WEA; WEA; Apdw

Also, the ppC is generally violated in virtue of the ratio
scale frequency conversion, as shown in Prop. (8).

4.2.2 Distributed Counts

Instead of a subset count contributing multiple element
counts, the single subset count can be additively dis-
tributed amongst the w € A. Since there is no further
information about how to distribute the count, then by
the MEP a uniform distribution should be used. Then
the element count for each w € 2 is

Yw e, clw)= Z

Ajaw

Cj
— 17
|A;] (17)

Corollary 18 f(w) = c¢(w)/M.

Proof: Because

C; CilA;]
YSEBID PP S-S gl LI SUE
wed wEQAj9w| ]| A eFE |AJ| A;eFE
therefore (@) @)

c(w c(w
flw) = =

Yweaclw) M-

By this method, the example in Fig. 1 yields a fre-
quency distribution

F=1(1/4,11/24,5/24,1/12).

Not surprisingly, this method is closely related to the
applications of the MEP as discussed above.

Theorem 19 Assume an empirical random set S¥ and
let f be a frequency distribution determined by (17).
Then f i1s the maximum entropy probability distribution
pSE from (3).



Proof: From (17), (18), the set-frequency definition
(10), and the maximum entropy probability distribution
formula (3), then Vw € €,

c(w) Cj mf SE
f W)= —~ = —_ = — =P w).
s DR w A VR
||
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