
Strong Probabilistic Compatibility ofPossibilistic Histograms�Cli� JoslynyAugust 1995AbstractSome properties of empirical random sets and possibilis-tic histograms related to strong probabilistic compati-bility are described. We will discuss possibilistic his-tograms and the possibility of occurence, the nature ofprobability distributions which are strongly stochasti-cally compatible with a given possibility distribution,and the derivation of frequency distributions from em-pirical random sets.1 IntroductionPossibility theory [3] is an alternative information theoryto that based on probability. Although possibility theoryis logically independent of probability theory, they arerelated: both arise in Dempster-Shafer evidence theoryas fuzzy measures de�ned on random sets; and their dis-tributions are both fuzzy sets. So possibility theory is acomponent of a broader Generalized Information Theory(git), which includes all of these �elds [12].Zadeh's concept of probabilistic-possibilistic consis-tency [16] is an example of the kind of principle whichcan be brought to bear on the problem of deriving acoherent, synthetic git. In order to accommodate thedesired properties of possibilistic semantics, Joslyn hasextended this idea to a principle of strong compatibility(or consistency) [7].Another example of a synthetic principle is the useof random sets|originally developed as a branch ofstochastic geometry [10]|to provide a broad, unifyingcontext within which to develop git [4]. Joslyn has alsoused random sets to ground possibility theory on an em-pirical basis by developing methods for the measurementof possibility distributions, and in particular possibilistic�Prepared for the 1995 International Symposium on Uncer-tainty Modeling and Analysis.yNRC Research Associate, Mail Code 522.3, NASA GoddardSpace Flight Cen-ter, Greenbelt, MD 20771, USA, joslyn@kong.gsfc.nasa.gov,http://groucho.gsfc.nasa.gov/joslyn, (301) 286-2598.

histograms, based on empirical random sets, in turn de-rived from the collection of set-valued observations [5, 8].Some properties of empirical random sets and possi-bilistic histograms are described related to strong prob-abilistic compatibility. After introducing the fundamen-tals of possibilistic mathematics and measurement, wewill discuss possibilistic histograms and the possibility ofoccurence, the nature of probability distributions whichare strongly stochastically compatible with a given pos-sibility distribution, and the derivation of frequency dis-tributions from empirical random sets.2 Mathematical PreliminariesAssume a �nite universe 
 := f!ig; 1 � i � n.2.1 Possibilistic MathematicsThe function m: 2
 7! [0; 1] is an evidence function(otherwise known as a basic probability assignment)when m(;) = 0 and PA�
m(A) = 1. Denote a ran-dom set generated from an evidence function asS := fhAj ;mji : mj > 0g; (1)where h�i is a vector, Aj � 
;mj := m(Aj), and1 � j � N := jSj � 2n � 1:Denote the focal set of S as F := fAj : mj > 0g. Shas core and supportC(S) := \Aj2F Aj ; U(S) := [Aj2F Ajrespectively, and is consistent if C(S) 6= ;.The plausibility and beliefmeasures on 8A � 
 arePl(A) := XAj 6?Amj ; Bel(A) := XAj�Amj ;where A ? B denotes A \ B = ;. Pl and Bel are gen-erally non-additive fuzzy measures [15], and are dual,
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2in that 8A � 
;Bel(A) = 1 � Pl(A ). In general onlyplausibility will be considered below. The plausibilityassignment (otherwise known as the one-point cov-erage function) of S is ~Pl = hPlii := hPl(f!ig)i, wherePli := XAj3!i mj :When 8Aj 2 F ; jAjj = 1, then S is speci�c, andPr(A) := Pl(A) = Bel(A) is an additive probabilitymeasure with8A;B � 
;Pr(A [B) = Pr(A) + Pr(B) � Pr(A \B): (2)Then ~p = hpii := ~Pl is a probability distributionwith additive normalization and operatorXi pi = 1; Pr(A) = X!i2A pi:It is well known that statistical entropy is the canoni-cal measure of information in probability theory [13]. Ingeneral, the probability distribution with maximal en-tropy is the maximally uninformative probabilitydistribution denoted ~p �, and results when 8i; pi = 1=n[9]. Given a random set S, then the Maximum En-tropy Principle (mep) [12] has been applied [2] to derivea canonical probability distribution pS approximatingS, replacing each subset evidence value m(Aj) with themep uniform probability distribution over its members,so that 8! 2 
; pS (!) := XAj3! mjjAjj : (3)S is consonant (F is a nest) when (without loss ofgenerality for ordering, and letting A0 := ;) Aj�1 �Aj . Now �(A) := Pl(A) is a possibility measure and�(A) := Bel(A) is a necessity measure.1 As Pr isadditive, so � is maximal:8A;B � 
; �(A [B) = �(A) _�(B);where _ is the maximum operator. ~� = h�ii := ~Pl isnow a possibility distribution with maximal normal-ization _i �i = 1 (4)and operator �(A) = _!i2A�i: (5)1Since results for necessity are dual to those of possibility, onlypossibility will be discussed in the sequel.

The maximally uninformative possibility distri-bution denoted ~��, has maximal nonspeci�city [12], andresults when 8i; �i = 1 [9].The condition (4) for ~Pl to be a possibility distributionis actually achieved whenever S is even consistent (whichis required when S is consonant). When S is consistentbut not consonant, then even though ~Pl is a possibil-ity distribution by (4), Pl is not a possibility measure�. Then there is a unique possibilistic approximation�� to Pl achieved by invoking (5) on � [9]. If S is noteven consistent, then there are well-justi�ed possibilisticnormalization methods [6, 14] such as \consistent trans-formations" [6], which select certain elements or regionsof � to be \elevated" to be in a core.The following result will be useful below:Corollary 6 If S is consistent, then m(A) > 0 !Pl(A) = 1.Proof: Fix A � 
. Since S is consistent, C(S) =TAj2F Aj 6= ;, so that 8Aj1 ; Aj2 2 F ; Aj1 6? Aj2 . Sincem(A) > 0, therefore A 2 F , and so 8Aj 2 F ; A 6? Aj.Therefore Pl(A) =PAj 6?Amj =PAj2F mj = 1.2.2 Possibilistic-Probabilistic Compati-bilityThis paper concerns situations where probability andpossibility are considered together. Measures ofcompatibility2between a probability and a possibilitydistribution are available [1]. The best known of theseis Zadeh's measure [16]
Z(~p ; ~�) := ~p � ~� = nXi=1 pi�i;where 
Z(p; �) = 1 indicates maximal compatibility and
Z(p; �) = Vi �i minimal compatibility, and ^ is theminimum operator.We now introduce some ideas from probabilistic mea-surement. Assume a counting function c: 
 7! W suchthat ci := c(!i) is the count of the occurrences of !i ina statistical record. Then a frequency distribution isa function f : 
 7! [0; 1] wheref(!i) = fi := ciPi ci :Denote the vector ~f := hfii. The frequency measureis a function P : 2
 7! [0; 1] where 8A � 
,P (A) := X!i2A fi:2The term used in the literature is actually \consistency",so to avoid confusion with random set consistency, we will use\compatibility".



3~f is a natural probability distribution with normalizationPi fi = 1, and P is a natural probability measure as in(2).Many methods are available to convert a given proba-bility distribution to a possibility distribution, and viceversa [13]. One of the most prominent is the maximumnormalization or ratio scale method [11]. Given a fre-quency distribution f , then let �m: 
 7! [0; 1] be a pos-sibility distribution where�m(!i) = �mi := ciWi ci :It follows [9] that�mi = fiWfi ; fi = �miP�mi : (7)We also have the following result [9].Proposition 8 If 
Z(f; �m) = 1 then ~f = ~p � and ~�m =~��.Joslyn has also considered the semantics of possibilitytheory from a number of di�erent perspectives, includingthe contexts of graduated, physical, and modal concep-tual frameworks [9]. In particular, he has consideredwhat an appropriate relation between probabilistic andpossibilistic representations of the same problem domainwould be [7], and has asserted the following strong prin-ciple.Principle 9 (Strong Probability-Possibility Com-patibility (ppc)) For a given probability measure Prand possibility measure � to be strongly compatbile,then 8A � 
; Pr(A) > 0$ �(A):It follows that Pr(A) = 0$ �(A) < 1, and�(A) > 0! Pr(A) > 0; �(A) = 0! Pr(A) = 0:At the distribution level it follows that8! 2 
; p(!) > 0$ �(!) = 1; p(!) = 0$ �(!) < 1:Finally, if the distributions ~p and ~� are strongly com-patibile, then 
Z(~p ; ~�) = 1.Note that the ppc (9) is not a de�nition or a theorem,but is rather a principle asserted as a semantic criterion,and is thus necessarily extra-theoretical. Detailed argu-ments justifying this position are o�ered elsewhere [7, 9].Su�ce it here to say that the ppc states that somethinghaving non-zero probability is likely, and therefore givensu�cient time eventual, and therefore equivalent to itsbeing completely possible. Conversely, a properly possi-ble event (0 < �(A) < 1) must be of probability mea-sure zero, and probability zero may or may not indicateproper possibility.

2.3 Possibilistic MeasurementMeasurement methods for possibility distributions havedeveloped by Joslyn [5, 8, 9]. To derive a possibilitydistribution from an empirical source, it is necessary toobserve subsets Bs � 
; 1 � s �M denoted as a vector~B := hBsi. The set of observed subsets produced byeliminating any duplicates in ~B is an empirical focalset FE := fAjg, where N � M and 8Aj 2 FE ; 9Bs 2~B;Bs = Aj , and inclusion of an element in a vector isde�ned as appropriate.Denoting the number of times that a given set Bs =Aj occurs in ~B as C(Aj), then the set-frequency func-tion ismE :FE 7! [0; 1]; mE(Aj) = CjPAj2FE Cj = Cj=M;(10)where Cj := C(Aj). mE is clearly an evidence func-tion, which in turn generates an empirical randomset denoted SE according to (1). If FE is a disjointclass, then SE generates a probability distribution onan equivalence class on U(F). But if SE is consistent,then the empirical possibility distribution is�(!) = XAj3!mEj = PAj3! CjM : (11)Possibility distributions derived according to (11) canbe properly described as possibilistic histograms,similar to ordinary (stochastic) histograms, but gen-erated from possibly overlapping interval observations,and thus governed by the mathematics of random sets.In the sequel it will be assumed that SE is consistent, ei-ther naturally or as the result of a normalizationmethod,and thus � from (11) is a possibility distribution.An example is shown in Fig. 1. On the left, four ob-served intervals are shown. The bottom two occur withfrequency 1=2, while each of the upper two have fre-quency 1=4. Together they determine SE . The stepfunction on the right is the possibilistic histogram � de-rived from (11). It can be brie
y stated in vector formas ~� = h1=4; 1; 1=2; 1=4iwhere the values are taken on each of the piecewise con-stant segmentsh[1; 1:5); [1:5; 2]; (2; 3:5]; (3:5; 4]i ; (12)of the step function, as shown in the �gure. Also shownin the �gure are two examples of the variety of well-justi�ed continuous approximations to a possibilistic his-togram [8]. This approach to possibilistic measurementgeneralizes to n intervals and to the continuous case.
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�Figure 1: (Left) Four example observed intervals. (Right) The possibilistic histogram and two continuous approx-imations.3 Strongly Compatible Proba-bility DistributionsFrom the natural language perspective, the primary se-mantic criterion for possibility is that the occurrence ofan event requires maximal (unitary) possibility. In apossibilistic histogram the occurring events are exactlythose Bs 2 ~B which have been observed. So this condi-tion is easily met by possibilistic histograms.Corollary 13 If FE is consistent, then 8Bs 2~B;�(Bs) = 1.Proof: Fix Bs. Then C(Bs) � 1, so m(Bs) � 1=M >0. The result follows from the corrolary (6) and theconsistency of FE .Probability distributions which conform to the ppcwith a possibilistic histogram should also be considered.Under the ppc (9), it is necessary that p(!) = 0 wherever�(!) < 1, that is 8! 62 C(FE). In the example in Fig. 1,that would yield p > 0 only on the interval C(�) =[1:5; 2). No further information would be provided by�, and so the mep would yield the uniform probabilitydensity p�(!) = � 2; ! 2 [1:5; 2)0; elsewhere :This result makes complete sense in the context of thenature of subset measurements. Given a consistent setof observed intervals, if they are all to be believed thenall that can be said is that the event actually happenedsomewhere in the core. There the possibility is unitary,and by the ppc the probability is positive. But there isno further information about the likelihood of the eventbeing anywhere particular inside the core, thus requiringthe maximallyuninformative probability distribution p�.The fact that 8! 2 U(�); ! 62 C(�); 0 < � < 1 indi-cates that it is somewhat possible for another observa-tion, perhaps at another time, to be found somewherebetween the core and the edge of the support, but not

completely possible, since nothing can be said to havebeen actually observed there yet. Thus the subset mea-surements give no likelihood information about the oc-currence of an ! in this region, and by the ppc p = 0there.If SE is inconsistent, and thus a consistent approxi-mation must be made, then for a focus !0 2 
;C(SE ) =f!0g, and so p will be a Dirac-delta function at !0.4 Frequency Distributions fromEmpirical Random SetsIt is also interesting to see how a purely \probabilistic"treatment would approach set-statistics. In particular,it is possible to use other counting methods to derivean ordinary frequency distribution ~f from the countsattached to each observed subset.4.1 Frequency Analysis of Subset Mea-surementsIn order to simplify the problem, consider the case oftwo overlapping observations on a discrete universe. Let
 = fa; b; cg, and assume two observations B1 = fa; bgand B2 = fb; cg, so that C(B1) = C(B2) = 1.On a pure frequency analysis at the level of the subsetsBs, then Pr(B1) = Pr(B2) = 1=2. Under the assumptionthat Pr should have an additive probability distributionp: 
 7! [0; 1], thenp(a) + p(b) + p(c) = 1p(a) + p(b) = 1=2p(b) + p(c) = 1=2which has the solution p(a) = p(c) = 1=2; p(b) = 0. Thisis entirely unsatisfactory, and maximally incompatiblewith the possibilistic results above: it eliminates proba-bility exactly on b, the point where there is the most evi-dence, and where in the possibilistic histogram �(b) = 1.



5Only slightly more complicated cases, such as the exam-ple in Fig. 1, reveal that this method frequently doesnot yield any feasible solutions for non-negative proba-bilities.4.2 Subset to Element CountsAnother approach is to translate the counts on subsetsinto counts on elements, thus establishing a mappingC 7! c. There are a number of ways in which that couldbe done.4.2.1 Duplicated CountsWe could say that a nonspeci�c observation is really anobservation of every element of the subset. Then eachobservation of a subset Bs would contribute one elementcount for every ! 2 Bs. Then the overall element countis 8! 2 
; c(!) = XAj3!Cj: (14)Corollary 15 f(!) = c(!)PAj2FE CjjAj j :Proof:f(!) = c(!)P!2
 c(!) = c(!)P!2
PAj3! Cj= c(!)PAj2FE CjjAjj :By this method, the example in Fig. 1 yields the fre-quency distribution~f = h2=9; 4=9; 2=9;1=9i :similarly valued over the piecewise constant segments in(12). Note that this is identical to ~� for elements havingthe same numerator, but the denominator changed from4 (which isPCj) to 9 (which isP c(!) =PCjjAjj).In fact, the e�ect of this count duplication method isto establish a maximum normalized ratio scale between� and f .Theorem 16 Given a consistent FE with a frequencydistribution f determined by (14), then 8! 2 
,f(!) = �(!)P�(!) ; �(!) = f(!)W f(!)

Proof: From the possibilistic histogram formula (11)and (14), 8! 2 
; M�(!) = XAj3!Cj = c(!):Therefore from the corollary (15),f(!) = c(!)P!2
 c(!) = M�(!)P!2
M�(!) = �(!)P!2
 �(!) :The second result follows from the ratio scale frequencyconversion (7).Thus the disadvantages of duplicating counts like thisare clear. First, frequency additivity is violated becauseX!2Aj c(!) = X!2Aj XAk3wCk � Cj:Also, the ppc is generally violated in virtue of the ratioscale frequency conversion, as shown in Prop. (8).4.2.2 Distributed CountsInstead of a subset count contributing multiple elementcounts, the single subset count can be additively dis-tributed amongst the ! 2 A. Since there is no furtherinformation about how to distribute the count, then bythe mep a uniform distribution should be used. Thenthe element count for each ! 2 
 is8! 2 
; c(!) = XAj3! CjjAjj : (17)Corollary 18 f(!) = c(!)=M .Proof: BecauseX!2
 c(!) =X!2
 XAj3! CjjAjj = XAj2FE CjjAj jjAjj = XAj2FE Cj =M;therefore f(!) = c(!)P!2
 c(!) = c(!)M :By this method, the example in Fig. 1 yields a fre-quency distribution~f = h1=4; 11=24; 5=24;1=12i :Not surprisingly, this method is closely related to theapplications of the mep as discussed above.Theorem 19 Assume an empirical random set SE andlet f be a frequency distribution determined by (17).Then f is the maximumentropy probability distributionpSE from (3).



6Proof: From (17), (18), the set-frequency de�nition(10), and the maximumentropy probability distributionformula (3), then 8! 2 
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