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Abstract

Decision making is cast in the semiotic context of
perception, decision, and action loops. Towards the
goal of properly grounding hybrid representations of
information and uncertainty from this semiotic per-
spective, we consider the roles of and relations among
the mathematical components of General Informa-
tion Theory (GIT), particularly among fuzzy sets,
possibility theory, probability theory, and random
sets. We do so by using a clear distinction between
the syntactic, mathematical formalism and the se-
mantic domains of application of each of these fields,
placing the emphasis on available measurement and
action methods appropriate for each formalism, to
which and from which the decision-making process
flows.

1 Introduction

From a semiotic perspective [3, 17], an intelligent sys-
tem can be described as a control system, involv-
ing a perception or measurement (input) function
from the environment to the system, an action (out-
put) function from the system to the environment,
and a knowledge or information (throughput) func-
tion within the system. Another important conse-
quence of the semiotic perspective is the clear dis-
tinction drawn among the syntactic, semantic, and
pragmatic aspects of the use of information in sys-
tems. All of these are mutually necessary at different
levels of analysis in a fully functioning, viable semi-
otic system.

We can describe decision making generally as
the process of selecting among a variety of choices,
whether completely (selecting a particular choice)
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or incompletely (reducing or constraining the viable
choices). Thus decision making cannot be separated
from the concepts of information and uncertainty:
uncertainty 1s present whenever there are multiple
possible choices; and the gain of information is repre-
sented by selecting among the choices, thus reducing
that uncertainty.

Classically, probability theory has been the sole
mathematical method to represent information and
uncertainty; that is, probability distributions have
been the only method by which weights are placed
on choices. But recent years have seen a prolifer-
ation of new, non-probabilistic mathematical meth-
ods for the representation of uncertainty and infor-
mation in systems models. Following Klir [14] we
call these methods collectively “General Information
Theory” (GIT), which includes fuzzy sets, systems,
and logic [15]; fuzzy measures [21]; random set [13]
and Dempster-Shafer evidence theory [6]; possibility
theory [2]; imprecise probabilities [20]; probability
bounds [5]; rough set theory [19]; and others.

Each of these involves some form of generalization
or extension away from stochastic representations,
and any or all of them can be utilized in semiotic
systems to represent the information of perceptions,
actions, and decisions. Transformations can be made
among them, and hybrid representations can be uti-
lized.

In this paper we first make the decision making
process in semiotic systems more explicit, highlight-
ing both the semantic and informational aspects. We
then briefly introduce the components of GIT, and
elucidate the relations among fuzzy sets, possibility
theory, probability theory, and random sets. Finally,
we consider more specifically the realization of these
representations in semiotic systems, and their conse-
quences for decision making in particular.

2 Semiotic Control Systems

Fig. 1 shows a system in a classical control relation
with its environment. In the world (the system’s en-
vironment) the processes of “reality” proceed outside
of the knowledge of the system. Rather, all knowledge
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Figure 1: A semiotic control system.

of the environment by the system is mediated through
the measurement (perception) process, which pro-
vides a partial representation of the environment to
the system. In turn, the system takes certain actions
into the world, but still has no knowledge of the con-
sequences of those actions except as reflected in later
measurements.

Between the system’s measured state and the agent
which decides (performs) its action is what can be
called an information or knowledge relation. Mini-
mally, this is just the transmission of the representa-
tion of the environment to the agent. In more com-
plex systems, this plays the role of cognition, infor-
mation processing, or knowledge development. Typ-
ically, extra or external knowledge about the state of
the world or the desired state of affairs is brought to
bear, and provided to the agent in some processed
form, for example as an error condition or distance
from optimal state.

Clearly control systems are involved in cyclic rela-
tions with their environments. To be in good con-
trol, the overall system must form a negative feed-
back loop, so that disturbances and other external
forces from “reality” (for example noise or the ac-
tions of other external control systems) are counter-
acted by compensating actions so as to make the
measured state as close as possible to some desired
state. If rather a positive feedback relation holds,
then such fluctuations will be amplified, ultimately
bringing some critical internal parameters beyond tol-
erable limits, or otherwise exhausting some critical
system resource, and thus leading to the destruction
of the system as a viable entity.

2.1 Control as a Semantic Relation

We interpret the control system in a semiotic context,
thereby evoking the distinctions among syntactic (the

formal properties of symbol tokens as used in symbol
systems), semantic (the interpretation of tokens as
their meanings), and pragmatic (the use of symbol
tokens and their meanings for the overall purposes or
survivability of the system) relations [1, 3].

The processes in the control relation, and especially
the decision-making functions of the agent, are inher-
ently semantic. The role of the agent is to accept
information about the measured state of the environ-
ment, compare it to the desired state, and, based on
the discrepancy, to engage in a decision-making pro-
cess of selecting one action amongst multiple possible
actions which is appropriate for the goal of maintain-
ing the overall system in a stable, negative feedback
relation.

This making of appropriate choices 1s exactly the
semantic function in a semiotic system. It 1s on this
required “appropriateness” of the choice of the agent
that the “intelligence” of the semiotic system rests:
a certain action is “correct” in a given context, while
another i1s not. This semantic function is a coding
relation, which i1s a contingent entailment, meaning
that it is arbitrary, but fixed [10].

This is the hallmark property of semantic systems,
that the coding of their symbol tokens act as con-
tingent functional entailments, and are thus dually
contingent and necessary at complementary levels of
analysis. That is, from within the symbol system,
the token must necessarily be interpreted according
to the code, but from without we are (or “evolution”
is) free to choose any coding we please. They are con-
ventional, constructed and interpretable by a certain
closed “linguistic community” [16].

Thus codes act as rules within systems (to use Pat-
tee’s language [18]), as contrasted with natural laws,
which are wholly necessary at all levels of analysis.
This combination of freedom and determinism is not
possible with purely physical systems. Indeed, the
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Table 1: Functions sufficient for semiotic control.

school of biosemiotics [4] is dedicated, in some sense,
to the proposition that the classes of semiotic sys-
tems and living systems are equivalent, or at least
coextensive [4, 10].

A simplified example will serve to illustrate this
point. Let O be a simple organism which lives near an
oceanic thermocline with warm water above and cold
water below. O acts as a semiotic control system in
relation to the thermocline. Its perception is a single
critical variable of temperature with states

X = {+ = too hot, — = too cold, 0 = just right},
and it has a single variable action with states

Y = {u=goup,d = go down,n = do nothing}.
The information relation is simply transmission of X
to the agent.

There are 3% = 27 possible functions f: X — Y,
any of which the agent could invoke to make a deci-
sion to take a particular action, but only the three
shown in Tab. 1 will result in stable negative feed-
back control. f; is the best default selection, since it
minimizes unnecessary action and results in smoother
and faster control. But if f is not selected from these
three, then positive feedback, not negative feedback,
will result, with a corresponding runaway behavior.

There 1s no fundamental natural law of the uni-
verse which requires f to be selected according to the
principles of negative feedback. Instead, this selec-
tion is contingent on, and results from, the process
by which the system is constructed.

In a system which has contingent entailments
(rules), there are semantic relations of meaning
among the components. In our example, it is appro-
priate to say that for our organism “too hot” actually

means “go down”, and “too cold” actually means “go
”

up”.

2.2 Decision-Making as an Informa-
tional Process

Not only are semantic relations present in semiotic
systems, but these can be measured in information
theoretical terms. Consider a (finite) set of possibil-
ities 2 = {w} available to the agent. Classically, the
process of selection can be described as the identifi-
cation of a specific choice w* € Q.

Consider the agent as a communication channel.
Before the choice is made, there are || possibilities,
and thus there is an inherent a priori uncertainty as
to which choice w* € Q will be selected. Furthermore,
after the selection is made, there is total certainty as
to what the choice was, namely w*. Therefore we can
regard the process of decision-making performed by
the agent as the reduction of uncertainty as to which
choice will be made, and conversely as the gain of
information as to which choice was made. In either
case the amount of this uncertainty or information 1s
quantified as I = log,(|€2]).

In the classical case the set of available choices is
constrained to exactly one: w* € . To express the
selection of the action as a weaker form of constraint,
we can instead identify a subset §§ # Q* C Q, rep-
resenting now not a particular choice, but a nonde-
terministic restriction of the possible choices. Now
the information is quantified as log,(|Q|/|Q*]) =
log,(€2) —log,(£2*), where the prior situation remains
a special case where Q* = {w*}.

3 General Information Theory
Methods

All of this is well known, and has been extended in
a variety of ways in information theory. Classical
information theory is based on situations where the
choices the agent makes are quantified according to
the rules of probability theory, and entropy measures
are used to quantify the total quantity of uncertainty
or information involved.

But recent years have seen a proliferation of math-
ematical methods for the quantification of these
choices, and a similar proliferation of global measures
of information. Most of these methods attempt to
generalize away from probability in one way or an-
other, but remain intimately related to it.

Generalized Distributions and

Measures

3.1

One important generalization is to define decision-
making as the identification of a fuzzy subset A c
Q, where A is defined by its membership function
p7:§ — [0,1]. Nondeterministic constraint remains
a special case where Vw € Q,ug(w) € {0,1}.

For any possibility w € €2, the value /JX((.U) indi-
cates the weight placed on the particular choice w. If
py(w) =0 then w is eliminated; if p7(w) = 1 then w
is completely allowed; and if p7(w) € (0, 1) then w is
partially allowed. The classical case is expressed by
Fw* e Q,ug(w*) =1,Vw # w*,ug(w) =0.
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Figure 2: Types of distributions.

So taken as a whole, the entire function 4 assigns
a set of arbitrary weights to choices. It may be that
p 7 has some other interesting mathematical proper-
ties so that it acts as a kind of generalized distribu-
tion. In particular, we are interested in properties
of the distribution with respect to operators of the
form @:[0,1]? +— [0, 1], usually taken as addition-like
triangular conorms U: [0, 1] — [0, 1] (commutative,
associative, and monotonic, with identity 0). Given

a conorm U, then a fuzzy set I is said to be U-normal
i | e () = 1.

There are many parameterized families of conorm
operators, but the ones of most interest to us here are
the bounded sum a+3b := (a+b)Al, where a,b € [0, 1]
and A 18 minimization, and the the maximum oper-
ator @ V b. Since normalization under the operator
+ (not itself a conorm, since +:[0,1] — [0,2]) im-
plies normalization under +;, therefore a probability
distribution p is a special +3-normal fuzzy set. A V-
normal fuzzy set is called possibility distribution .
The measure of information then becomes the clas-
sical entropy measure for probability theory, and the
nonspeciﬁcity measure for possibility theory

= —Z w)log, p(w),
N(m) = Z(ﬂ'i_ﬂ'i+1)log2(i)

respectively, where in the possibilistic case the 7; are
ordered with 1 < ¢ <n and 741 := 0.

Possibility theory [2] provides an important new

form of information theory, and is crucial because
it generalizes nondeterminism and nonspecificity in
a far superior way to probability theory. Nonde-
terministic constraint is identified as a case of crisp
possibility, where Yw € Q,w(w) € {0,1}, so that
0 = {w : m(w) = 1}. Similarly, N(7) generalizes
the log,(]2*]) measure in this case. In this way, for
example, fuzzy intervals (convex, normal fuzzy sets
of IR) properly generalize classical intervals, and pos-
sibilistic processes properly generalize state transi-
tions with an intermediate degree of nondeterminism

8, 12].

As fuzzy sets generalize probability distributions,
so fuzzy measures generalize probability measures.
Given a U-normal fuzzy set p7, then a normal U-
distributional (U-decomposable) finite fuzzy measure
(a monotonic set function v: 2% — [0, 1] [21]) results
from the construction

v(A) = I_I ug(w), ACQ.
w;EA
When By is +-normal, then v is a probability mea-

sure with the usual additive properties, and when
U = V then II := v is a possibility measure with
the maximal property

(AU B)=1(A) vII(B), A, BCQ.
Similarly, the distributions (fuzzy sets) are recovered
from measures by the relation pi7(w) = v({w}).
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investigated.

3.2 Random Sets and Dempster-
Shafer Evidence Theory

An important goal for the GIT research community is
to synthesize these methods in order to find common
axiomatizations, and random sets provide one of the
most satisfying mathematical forms to do so. Ran-
dom sets generalize random variables in that they are
set-valued, and are simple hybrid structures combin-
ing probabilistic randomness with the nonspecificity
of variable subset size, extent, and overlap.

Given a focal set (a collection of subsets F =
{4; : 0 # A; C Q},1 < j < N), each is as-
signed a probability of occurrence m(4;) € [0, 1] with
ZA]E}- m(A;) = 1. Then § = {(4;,m(4;))} is a

random set [13].

These statistical structures are mathematically
isomorphic to Dempster-Shafer bodies of evidence.
They do not yield to traditional statistical interpre-
tations in that a unique probability distribution p on
Q consistent with the given evidence m cannot gener-
ally be recovered. Rather, they generate the (usually
non-distributional) fuzzy measures Bel and Pl given

\ |
Additive Fuzzy Maxitive Possibility
Measures Measures

Probability
Bounds

Modal Logic

(Bottom) Other components being

by

Bel(4) := Y m(4;), > om4y),
A;CA A;NA£D

which act as bounds on the probability measure as-

sociated with the hypothetical distribution p, and a

fuzzy set called the one-point trace with membership

p(w) = Pl({w)).

There are two important special cases of the topol-
ogy of the focal set: when the A; are all singletons,
then § is specific, and Pl = Bel is a probability mea-
sure with distribution p := p; and when the A; are
all nested with A;_; C A; (Ag := 0), then Pl is a
possibility measure with distribution 7 := p. A map

of all of these structures and their relations is shown
in the top of Fig. 3.

PI(A) :=

3.3 Other Components of GIT

There are a number of other mathematical for-
malisms which have been demonstrated to be closely
related to the above cluster, or whose connections are
being actively pursued.

Rough sets [19] are structures which approximate
a given statement by an inner and an outer approxi-
mation, and in their simple forms are also crisp possi-
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bility distributions. Walley’s imprecise probabilities
[20] generalize probability measures directly, and gen-
erate a variety of interesting structures including ev-
idence measures. Probability bounds on cumulative
distribution functions [5] are in some ways similar to
evidence measures, in that they operate on families of
distributions, but their connection to fuzzy measures
remains unclear. Finally, there has been recent work
to interpret modal logic in the context of evidence
measures, including possibility theory [7].

4 Consequences

So where does the recognition of this wide array of
information theoretical methods leave us with respect
to decision makingin the context of semiotic systems?

4.1 Formalisms and Applications

The first consideration is that from the semiotic per-
spective, just as the relation of symbols to their refer-
ents is a contingent entailment, so also is the relation
of mathematical theories to their applications and
interpretations. The formal, syntactic properties of
mathematical systems follow from their axioms, but
we are free to interpret them in any particular con-
text we choose: mathematical theories do not come
with inherent semantics.

This has been a problem, for example, in fuzzy
systems theory, where it has long been presumed
that fuzzy sets necessarily represent human cogni-
tive assessments of uncertainty through linguistic cat-
egories. No doubt that is an important application,
but only one among many.

In general we have many mathematical theories
with mappings and transformations among them and
many semantic domains of application, some of which
have representations in some of those theories. When
a particular method is used for a particular applica-
tion, and that method has mappings to a different
method, then it 1s suggested, if not demanded, that
the original interpretation be reconsidered from the
perspective of the new formalism (see Fig. 4).

Such 1s the case, for example, among random sets,
evidence theory, and fuzzy measure theory. While
random set and evidence theory are formally equiv-
alent, they have very different histories and agen-
das; evidence theory is primarily a cognitive mod-
eling method, while random set theory has been used
for statistical geometry, data fusion, and image anal-
ysis.  Similarly, fuzzy measures are widely used in
knowledge engineering applications, but their corre-
sponding random set interpretations are not generally
pursued.

4.2 Measurement and Action Meth-
ods

The effects of this are seen where the semantic func-
tions are involved. That is, our choice of interpreta-
tions will be dependent on the available measurement
and action methods. For example, in classical infor-
mation theory, histograms and sample statistics are
used to generate measured probability distributions
by statistical inference. And in classical fuzzy sys-
tems, non-statistical knowledge elicitation methods
are used to measure the cognitive state of a human
subject.

So non-subjective interpretations of fuzzy sets and
fuzzy measures must wait on the development of non-
subjective measurement procedures. Such procedures
are provided by random set measurement methods
[11], which promise, for example, to provide the best
empirical basis for possibility theory.

Similarly, appropriate measurement and action
methods are necessary for possibility theory, rough
set theory, etc. Such movement is under way, and fol-
lowing our previous argument, direction can be taken
by drawing on formal analogies from other mathe-
matical theories. For example, in this way possibilis-
tic Monte Carlo methods [9] and suggestions about
potential sample statistics [22] have been advanced.

Ultimately, the development of scientific theories is
dependent on the formal languages available to them:
new formal systems allow the possibility of new forms
of measurement from and action into the world. Sim-
ilar processes have occured in organisms over biologi-
cal time, in the form of the evolution of new modes of
perception and action. It can only be hoped that fur-
ther mathematical development will ultimately open
new vistas for scientific and engineering applications
as well.
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