
Hybrid Methods to RepresentIncomplete and Uncertain Information�Cli� Joslyn yJuly, 1996AbstractDecision making is cast in the semiotic context ofperception, decision, and action loops. Towards thegoal of properly grounding hybrid representations ofinformation and uncertainty from this semiotic per-spective, we consider the roles of and relations amongthe mathematical components of General Informa-tion Theory (git), particularly among fuzzy sets,possibility theory, probability theory, and randomsets. We do so by using a clear distinction betweenthe syntactic, mathematical formalism and the se-mantic domains of application of each of these �elds,placing the emphasis on available measurement andaction methods appropriate for each formalism, towhich and from which the decision-making process
ows.1 IntroductionFrom a semiotic perspective [3, 17], an intelligent sys-tem can be described as a control system, involv-ing a perception or measurement (input) functionfrom the environment to the system, an action (out-put) function from the system to the environment,and a knowledge or information (throughput) func-tion within the system. Another important conse-quence of the semiotic perspective is the clear dis-tinction drawn among the syntactic, semantic, andpragmatic aspects of the use of information in sys-tems. All of these are mutually necessary at di�erentlevels of analysis in a fully functioning, viable semi-otic system.We can describe decision making generally asthe process of selecting among a variety of choices,whether completely (selecting a particular choice)�To be presented in the session on \Information Rep-resentation in Decision Making Systems" at the confer-ence Intelligent Systems: A Semiotic Perspective, Na-tional Institute of Standards and Technology, October, 1996,http://gwis2.circ.gwu.edu/~joslyn/sem96.yNRC ResearchAssociate, Mail Code 522.3, NASA Goddard Space Flight Cen-ter, Greenbelt,MD 20771,USA, joslyn@kong.gsfc.nasa.gov,http://gwis2.circ.gwu.edu/~joslyn, (301) 286-5773.

or incompletely (reducing or constraining the viablechoices). Thus decision making cannot be separatedfrom the concepts of information and uncertainty:uncertainty is present whenever there are multiplepossible choices; and the gain of information is repre-sented by selecting among the choices, thus reducingthat uncertainty.Classically, probability theory has been the solemathematical method to represent information anduncertainty; that is, probability distributions havebeen the only method by which weights are placedon choices. But recent years have seen a prolifer-ation of new, non-probabilistic mathematical meth-ods for the representation of uncertainty and infor-mation in systems models. Following Klir [14] wecall these methods collectively \General InformationTheory" (git), which includes fuzzy sets, systems,and logic [15]; fuzzy measures [21]; random set [13]and Dempster-Shafer evidence theory [6]; possibilitytheory [2]; imprecise probabilities [20]; probabilitybounds [5]; rough set theory [19]; and others.Each of these involves some form of generalizationor extension away from stochastic representations,and any or all of them can be utilized in semioticsystems to represent the information of perceptions,actions, and decisions. Transformations can be madeamong them, and hybrid representations can be uti-lized.In this paper we �rst make the decision makingprocess in semiotic systems more explicit, highlight-ing both the semantic and informational aspects. Wethen brie
y introduce the components of git, andelucidate the relations among fuzzy sets, possibilitytheory, probability theory, and random sets. Finally,we consider more speci�cally the realization of theserepresentations in semiotic systems, and their conse-quences for decision making in particular.2 Semiotic Control SystemsFig. 1 shows a system in a classical control relationwith its environment. In the world (the system's en-vironment) the processes of \reality" proceed outsideof the knowledge of the system. Rather, all knowledge
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Figure 1: A semiotic control system.of the environment by the system is mediated throughthe measurement (perception) process, which pro-vides a partial representation of the environment tothe system. In turn, the system takes certain actionsinto the world, but still has no knowledge of the con-sequences of those actions except as re
ected in latermeasurements.Between the system's measured state and the agentwhich decides (performs) its action is what can becalled an information or knowledge relation. Mini-mally, this is just the transmission of the representa-tion of the environment to the agent. In more com-plex systems, this plays the role of cognition, infor-mation processing, or knowledge development. Typ-ically, extra or external knowledge about the state ofthe world or the desired state of a�airs is brought tobear, and provided to the agent in some processedform, for example as an error condition or distancefrom optimal state.Clearly control systems are involved in cyclic rela-tions with their environments. To be in good con-trol, the overall system must form a negative feed-back loop, so that disturbances and other externalforces from \reality" (for example noise or the ac-tions of other external control systems) are counter-acted by compensating actions so as to make themeasured state as close as possible to some desiredstate. If rather a positive feedback relation holds,then such 
uctuations will be ampli�ed, ultimatelybringing some critical internal parameters beyond tol-erable limits, or otherwise exhausting some criticalsystem resource, and thus leading to the destructionof the system as a viable entity.2.1 Control as a Semantic RelationWe interpret the control system in a semiotic context,thereby evoking the distinctions among syntactic (the

formal properties of symbol tokens as used in symbolsystems), semantic (the interpretation of tokens astheir meanings), and pragmatic (the use of symboltokens and their meanings for the overall purposes orsurvivability of the system) relations [1, 3].The processes in the control relation, and especiallythe decision-making functions of the agent, are inher-ently semantic. The role of the agent is to acceptinformation about the measured state of the environ-ment, compare it to the desired state, and, based onthe discrepancy, to engage in a decision-making pro-cess of selecting one action amongst multiple possibleactions which is appropriate for the goal of maintain-ing the overall system in a stable, negative feedbackrelation.This making of appropriate choices is exactly thesemantic function in a semiotic system. It is on thisrequired \appropriateness" of the choice of the agentthat the \intelligence" of the semiotic system rests:a certain action is \correct" in a given context, whileanother is not. This semantic function is a codingrelation, which is a contingent entailment, meaningthat it is arbitrary, but �xed [10].This is the hallmark property of semantic systems,that the coding of their symbol tokens act as con-tingent functional entailments, and are thus duallycontingent and necessary at complementary levels ofanalysis. That is, from within the symbol system,the token must necessarily be interpreted accordingto the code, but from without we are (or \evolution"is) free to choose any coding we please. They are con-ventional, constructed and interpretable by a certainclosed \linguistic community" [16].Thus codes act as rules within systems (to use Pat-tee's language [18]), as contrasted with natural laws,which are wholly necessary at all levels of analysis.This combination of freedom and determinism is notpossible with purely physical systems. Indeed, the



Hybrid Method 3X f1(X) f2(X) f3(X)+ d d d� u u u0 n d uTable 1: Functions su�cient for semiotic control.school of biosemiotics [4] is dedicated, in some sense,to the proposition that the classes of semiotic sys-tems and living systems are equivalent, or at leastcoextensive [4, 10].A simpli�ed example will serve to illustrate thispoint. Let O be a simple organismwhich lives near anoceanic thermocline with warm water above and coldwater below. O acts as a semiotic control system inrelation to the thermocline. Its perception is a singlecritical variable of temperature with statesX = f+ = too hot;� = too cold; 0 = just rightg;and it has a single variable action with statesY = fu = go up; d = go down; n = do nothingg:The information relation is simply transmission of Xto the agent.There are 33 = 27 possible functions f :X 7! Y ,any of which the agent could invoke to make a deci-sion to take a particular action, but only the threeshown in Tab. 1 will result in stable negative feed-back control. f1 is the best default selection, since itminimizes unnecessary action and results in smootherand faster control. But if f is not selected from thesethree, then positive feedback, not negative feedback,will result, with a corresponding runaway behavior.There is no fundamental natural law of the uni-verse which requires f to be selected according to theprinciples of negative feedback. Instead, this selec-tion is contingent on, and results from, the processby which the system is constructed.In a system which has contingent entailments(rules), there are semantic relations of meaningamong the components. In our example, it is appro-priate to say that for our organism \too hot" actuallymeans \go down", and \too cold" actually means \goup".2.2 Decision-Making as an Informa-tional ProcessNot only are semantic relations present in semioticsystems, but these can be measured in informationtheoretical terms. Consider a (�nite) set of possibil-ities 
 = f!g available to the agent. Classically, theprocess of selection can be described as the identi�-cation of a speci�c choice !� 2 
.

Consider the agent as a communication channel.Before the choice is made, there are j
j possibilities,and thus there is an inherent a priori uncertainty asto which choice !� 2 
 will be selected. Furthermore,after the selection is made, there is total certainty asto what the choice was, namely !�. Therefore we canregard the process of decision-making performed bythe agent as the reduction of uncertainty as to whichchoice will be made, and conversely as the gain ofinformation as to which choice was made. In eithercase the amount of this uncertainty or information isquanti�ed as I = log2(j
j).In the classical case the set of available choices isconstrained to exactly one: !� 2 
. To express theselection of the action as a weaker form of constraint,we can instead identify a subset ; 6= 
� � 
, rep-resenting now not a particular choice, but a nonde-terministic restriction of the possible choices. Nowthe information is quanti�ed as log2(j
j=j
�j) =log2(
)� log2(
�), where the prior situation remainsa special case where 
� = f!�g.3 General Information TheoryMethodsAll of this is well known, and has been extended ina variety of ways in information theory. Classicalinformation theory is based on situations where thechoices the agent makes are quanti�ed according tothe rules of probability theory, and entropy measuresare used to quantify the total quantity of uncertaintyor information involved.But recent years have seen a proliferation of math-ematical methods for the quanti�cation of thesechoices, and a similar proliferation of global measuresof information. Most of these methods attempt togeneralize away from probability in one way or an-other, but remain intimately related to it.3.1 Generalized Distributions andMeasuresOne important generalization is to de�ne decision-making as the identi�cation of a fuzzy subset eA e�
, where eA is de�ned by its membership function�eA: 
 7! [0; 1]. Nondeterministic constraint remainsa special case where 8! 2 
; �eA(!) 2 f0; 1g.For any possibility ! 2 
, the value �eA(!) indi-cates the weight placed on the particular choice !. If�eA(!) = 0 then ! is eliminated; if �eA(!) = 1 then !is completely allowed; and if �eA(!) 2 (0; 1) then ! ispartially allowed. The classical case is expressed by9!!� 2 
; �eA(!�) = 1; 8! 6= !�; �eA(!) = 0.
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Figure 2: Types of distributions.So taken as a whole, the entire function �eA assignsa set of arbitrary weights to choices. It may be that�eA has some other interesting mathematical proper-ties so that it acts as a kind of generalized distribu-tion. In particular, we are interested in propertiesof the distribution with respect to operators of theform �: [0; 1]2 7! [0; 1], usually taken as addition-liketriangular conorms t: [0; 1]2 7! [0; 1] (commutative,associative, and monotonic, with identity 0). Givena conormt, then a fuzzy set �eA is said to be t-normalif F!2
 �eA(!) = 1.There are many parameterized families of conormoperators, but the ones of most interest to us here arethe bounded sum a+bb := (a+b)^1, where a; b 2 [0; 1]and ^ is minimization, and the the maximum oper-ator a _ b. Since normalization under the operator+ (not itself a conorm, since +: [0; 1] 7! [0; 2]) im-plies normalization under +b, therefore a probabilitydistribution p is a special +b-normal fuzzy set. A _-normal fuzzy set is called possibility distribution �.The measure of information then becomes the clas-sical entropy measure for probability theory, and thenonspeci�city measure for possibility theoryH(p) := �X!2
 p(!) log2 p(!);N(�) := nXi=1(�i � �i+1) log2(i)respectively, where in the possibilistic case the �i areordered with 1 � i � n and �n+1 := 0.Possibility theory [2] provides an important new

form of information theory, and is crucial becauseit generalizes nondeterminism and nonspeci�city ina far superior way to probability theory. Nonde-terministic constraint is identi�ed as a case of crisppossibility, where 8! 2 
; �(!) 2 f0; 1g, so that
� = f! : �(!) = 1g. Similarly, N(�) generalizesthe log2(j
�j) measure in this case. In this way, forexample, fuzzy intervals (convex, normal fuzzy setsof IR) properly generalize classical intervals, and pos-sibilistic processes properly generalize state transi-tions with an intermediate degree of nondeterminism[8, 12].As fuzzy sets generalize probability distributions,so fuzzy measures generalize probability measures.Given a t-normal fuzzy set �eA, then a normal t-distributional (t-decomposable) �nite fuzzy measure(a monotonic set function �: 2
 7! [0; 1] [21]) resultsfrom the construction�(A) := G!i2A�eA(!); A � 
:When �eA is +-normal, then � is a probability mea-sure with the usual additive properties, and whent = _ then � := � is a possibility measure withthe maximal property�(A [B) = �(A) _�(B); A;B � 
:Similarly, the distributions (fuzzy sets) are recoveredfrom measures by the relation �eA(!) = �(f!g).
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Figure 3: (Top) Relations among some of the components of git. (Bottom) Other components beinginvestigated.3.2 Random Sets and Dempster-Shafer Evidence TheoryAn important goal for the git research community isto synthesize these methods in order to �nd commonaxiomatizations, and random sets provide one of themost satisfying mathematical forms to do so. Ran-dom sets generalize random variables in that they areset-valued, and are simple hybrid structures combin-ing probabilistic randomness with the nonspeci�cityof variable subset size, extent, and overlap.Given a focal set (a collection of subsets F =fAj : ; 6= Aj � 
g; 1 � j � N ), each is as-signed a probability of occurrence m(Aj) 2 [0; 1] withPAj2F m(Aj ) = 1. Then S := fhAj;m(Aj)ig is arandom set [13].These statistical structures are mathematicallyisomorphic to Dempster-Shafer bodies of evidence.They do not yield to traditional statistical interpre-tations in that a unique probability distribution p on
 consistent with the given evidence m cannot gener-ally be recovered. Rather, they generate the (usuallynon-distributional) fuzzy measures Bel and Pl given
byBel(A) := XAj�Am(Aj ); Pl(A) := XAj\A6=;m(Aj );which act as bounds on the probability measure as-sociated with the hypothetical distribution p, and afuzzy set called the one-point trace with membership�(!) := Pl(f!g).There are two important special cases of the topol-ogy of the focal set: when the Aj are all singletons,then S is speci�c, and Pl = Bel is a probability mea-sure with distribution p := �; and when the Aj areall nested with Aj�1 � Aj (A0 := ;), then Pl is apossibility measure with distribution � := �. A mapof all of these structures and their relations is shownin the top of Fig. 3.3.3 Other Components of GITThere are a number of other mathematical for-malisms which have been demonstrated to be closelyrelated to the above cluster, or whose connections arebeing actively pursued.Rough sets [19] are structures which approximatea given statement by an inner and an outer approxi-mation, and in their simple forms are also crisp possi-



Hybrid Method 6bility distributions. Walley's imprecise probabilities[20] generalize probability measures directly, and gen-erate a variety of interesting structures including ev-idence measures. Probability bounds on cumulativedistribution functions [5] are in some ways similar toevidence measures, in that they operate on families ofdistributions, but their connection to fuzzy measuresremains unclear. Finally, there has been recent workto interpret modal logic in the context of evidencemeasures, including possibility theory [7].4 ConsequencesSo where does the recognition of this wide array ofinformation theoretical methods leave us with respectto decision making in the context of semiotic systems?4.1 Formalisms and ApplicationsThe �rst consideration is that from the semiotic per-spective, just as the relation of symbols to their refer-ents is a contingent entailment, so also is the relationof mathematical theories to their applications andinterpretations. The formal, syntactic properties ofmathematical systems follow from their axioms, butwe are free to interpret them in any particular con-text we choose: mathematical theories do not comewith inherent semantics.This has been a problem, for example, in fuzzysystems theory, where it has long been presumedthat fuzzy sets necessarily represent human cogni-tive assessments of uncertainty through linguistic cat-egories. No doubt that is an important application,but only one among many.In general we have many mathematical theorieswith mappings and transformations among them andmany semantic domains of application, some of whichhave representations in some of those theories. Whena particular method is used for a particular applica-tion, and that method has mappings to a di�erentmethod, then it is suggested, if not demanded, thatthe original interpretation be reconsidered from theperspective of the new formalism (see Fig. 4).Such is the case, for example, among random sets,evidence theory, and fuzzy measure theory. Whilerandom set and evidence theory are formally equiv-alent, they have very di�erent histories and agen-das; evidence theory is primarily a cognitive mod-eling method, while random set theory has been usedfor statistical geometry, data fusion, and image anal-ysis. Similarly, fuzzy measures are widely used inknowledge engineering applications, but their corre-sponding random set interpretations are not generallypursued.

4.2 Measurement and Action Meth-odsThe e�ects of this are seen where the semantic func-tions are involved. That is, our choice of interpreta-tions will be dependent on the available measurementand action methods. For example, in classical infor-mation theory, histograms and sample statistics areused to generate measured probability distributionsby statistical inference. And in classical fuzzy sys-tems, non-statistical knowledge elicitation methodsare used to measure the cognitive state of a humansubject.So non-subjective interpretations of fuzzy sets andfuzzy measures must wait on the development of non-subjective measurement procedures. Such proceduresare provided by random set measurement methods[11], which promise, for example, to provide the bestempirical basis for possibility theory.Similarly, appropriate measurement and actionmethods are necessary for possibility theory, roughset theory, etc. Such movement is under way, and fol-lowing our previous argument, direction can be takenby drawing on formal analogies from other mathe-matical theories. For example, in this way possibilis-tic Monte Carlo methods [9] and suggestions aboutpotential sample statistics [22] have been advanced.Ultimately, the development of scienti�c theories isdependent on the formal languages available to them:new formal systems allow the possibility of new formsof measurement from and action into the world. Sim-ilar processes have occured in organisms over biologi-cal time, in the form of the evolution of new modes ofperception and action. It can only be hoped that fur-ther mathematical development will ultimately opennew vistas for scienti�c and engineering applicationsas well.References[1] Cariani, Peter A: (1989) On the Design of De-vices with Emergent Semantic Functions, SUNY-Binghamton, Binghamton NY, PhD Dissertation[2] de Cooman, Gert; Ruan, D; and Kerre, EE, eds.:(1995) Foundations and Applications of PossibilityTheory, World Scienti�c, Singapore[3] Deely, John: (1990) Basics of Semiotics, IndianaUP, Bloomington IN[4] Deely, John: (1992) \Semiotics and Biosemiotics:Are Sign-Science and Life-Science Coextensive?",in: Biosemiotics: The Semiotic Web 1991, ed. TASebeok, J Umiker-Sebeok, pp. 46-75, Mouton deGruyter, Berlin/NY
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