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1. Introduction

Random set theory (and the mathematically isomorphic Dempster-Shafer evidence theory) is one of the
most satifsactory mathematical grounds for fuzzy measure theory in general, and possibility theory in par-
ticular. Random sets, seen as set-valued random variables, generate belief and plausibility fuzzy measures
in general, probability measures when specific, and possibility measures when consonant. Similarly, the one-
point traces of random sets are fuzzy sets which are probability distributions when specific and possibility
distributions when consonant.

But the traces of consistent random sets (those with non-empty global intersections) are also possibility
distributions, and they yield unique canonical possibility measures which approximate their plausibility mea-
sures. Inconsistent random sets yield traces which are possibilistically sub-normal, and require possibilistic
normalization.

In this paper we first introduce two new normalization methods for finite random sets. Focused consistent
transformations, which have the effect of elevating a particular normalizing element to unity, have been
considered previously as possibilistic normalization methods for finite random sets [1]. Selecting the universe
element with maximum plausibility as the focus is justified by its order preserving property. Then, dimen-
sional extension appends the normalizing element, embedding the original random set in a higher dimensional
space.

We next extend focused consistent transformation normalization to random half-open interval subsets of IR
with finite base spaces. Traces of consistent random intervals are possibilistic histograms [3]. Although IR is
uncountable, a random interval is a finite collection of interval subsets. A set of intervals which partition the
support of the random interval is determined by taking all intersections of the focal elements recursively [3],
and these intervals form the atoms of a lattice whose operations are interval intersection and concatenation
(over gaps). In this space focused consistent tranformations are modified to require an atomic normalizing
interval, and set union is replaced with concatenation.

2. Mathematical Preliminaries

2.1. Random Sets

Assume a finite universe of discourse Ω := {ωi}, 1 ≤ i ≤ n := |Ω| and evidence function m: 2Ω 7→ [0, 1]
where m(∅) = 0 and

∑

A⊆Ω m(A) = 1. Then S := {〈Aj, mj〉} is a random set where 1 ≤ j ≤ N := |S| ≤ 2n,
m(Aj) > 0, and mj := m(Aj). The focal set is F(S) := {Aj} with core C(F(S)) :=

⋂

Aj∈F(S) Aj and

support U(F(S)) :=
⋃

Aj∈F(S) Aj. Random sets are mathematically isomorphic to Dempster-Shafer bodies
of evidence.

Given a random set S, define the plausibility measure Pl(A) :=
∑

Aj 6⊥A mj where A ⊥ B := A ∩ B = ∅

and plausibilistic trace ρ: Ω 7→ [0, 1] where ρ(ωi) := Pl({ωi}), and in vector form ~ρ = 〈ρi〉, with ρi := ρ(ωi).
As an example, let Ω := {x, y, z} and consider the random set S := {〈{x}, .5〉 , 〈{x, z}, .3〉 , 〈{y, z}, .2〉}.

† To be presented at the 1997 Conference of the International Institute for General Systems Studies, San Marcos, Texas.
‡ Mail Stop B265, Los Alamos National Labaoratory, Los Alamos, NM 87545, USA, joslyn@lanl.gov

http://gwis2.circ.gwu.edu/~joslyn, (505) 667-9096.

ISSN 1078-6236 c© 1997 International Institute for General Systems Studies



2

.5


.3
 .2
 .8
 .2


.5


0


0


.5


1


1
 .5


.8


.2


.5


1


1


Figure 1. (Left) The example random set. (Center) Bel. (Right) Pl.

This can be depicted graphically as in the left of Fig. 1, where the power set 2Ω is represented as a Boolean 3-
cube. Each node represents a subset A ⊆ Ω weighted with its value m(A) (values for m(A) = 0 are omitted).
In the center and right of are the corresponding cubes for Bel and Pl respectively.

When F(S) is specific, so that ∀|Aj| = 1, then Pl is a probability measure with probability distribution
p := ρ. When F(S) is a nest, so that the Aj are ordered with Aj−1 ⊆ Aj, where A0 := ∅, then Π := Pl is
a possibility measure with Π(A ∪ B) = Π(A) ∨ Π(B), and π := ρ is its possibility distribution with Π(A) =
∨

ωi∈A π(ωi) and normalization
∨n

i=1 π(ωi) = 1. But when F(S) is merely consistent, with C(F(S)) 6= ∅, then
π := ρ is still a maximum normalized possibility distribution, even though Pl is not necessarily a possibility
measure. Then there is a unique canonical possibility measure Π∗ derived from π which approximates Pl [1].

Finally, when F(S) is inconsistent, so that C(F(S)) = ∅, then ρ is possibilistically sub-normal with
∨n

i=1 ρi < 1. Then approximations are available which act as possibilistic normalization methods. A minimal
possibilistic normalization method is available by introducing a minimal core C(S) = {ωi} for some focus
ωi ∈ Ω.

2.2. Consistent Transformations

Given a random set S, a consistent transformation S 7→ Ŝ creates a new random set Ŝ , with focal set
F̂ := F(Ŝ) and evidence function m̂, when an evidential claim 〈A, m(A)〉 ∈ S is moved to a new focal
element Â ∈ F̂ , where Â ⊇ A, according to the algorithm:

1 m̂ := m.
2 m̂(A) := 0.
3 m̂(Â) := m̂(Â) + m(A).

Given a focus ωk ∈ Ω, a focused consistent transformation creates a new consistent random set Ŝk with
evidence function m̂k by affecting the transforms ∀Aj ∈ F , Aj 7→ Âj := Aj ∪ {ωk}. It follows that [1]

∀A ⊆ Ω, m̂k(A) =

{

m(A) + m(A − {ωk}), ωk ∈ A

0, ωk 6∈ A
,

~ρ = 〈ρ1, ρ2, . . . , ρk, . . . , ρn〉 7→ ~π = 〈ρ1, ρ2, . . . , 1, . . . , ρn〉 . (2.1)

An example is shown in Fig. 2 for Ω = {x, y, z} and an original random set S := {〈{x}, .1〉 , 〈{x, y}, .7〉 , 〈{z}, .2〉}
with plausibility assignment ~ρ = 〈.8, .7, .2〉. The approximations yield respectively

~π = 〈1, .7, .2〉 , 〈.8, 1, .2〉 , 〈.8, .7, 1〉 .

2.3. Random Intervals

Let D := {[a, b) ⊆ IR : a, b ∈ IR, a < b} be the class of half-open intervals. Then a random interval A is a
random set on Ω = IR with F(A) ⊆ D, or in other words a random left-closed interval subset of IR. Denote
the focal sets of A as Aj = [lj, rj) ⊆ IR, lj < rj.
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Figure 2. (Left) Original random set S (Center Left) Ŝx. (Center Right) Ŝy . (Right) Ŝz .

For random intervals, we modify the concept of the plausibility assignment slightly to be the plausibilistic
trace ρA: IR 7→ [0, 1] (or just ρ when clear from context) where

∀x ∈ IR, ρA(x) := Pl({x}) =
∑

Aj3x

mj . (2.2)

When A is consistent, then πA := ρA is a possibility distribution called a possibilistic histogram, and is a
fuzzy interval [3].

3. New Possibilistic Normalization Methods on Finite Random Sets

We first present two new methods for possibilistic normalization of finite random sets.

3.1. Maximum Plausibility Focus Selection

With focused consistent transformations, the general question becomes how to select the focus ωk. Previ-
ously we considered selecting ωk by the principle of uncertainty invariance, so as to make the total information
content of Ŝ as close as possible to that of S [1, 2]. But Ramer and Puflea-Ramer [4] have suggested that it
is also reasonable to select as a focus that ωk with maximal plausibility. This is the focus which distorts the
ordering of the original distribution as little as possible.

Corollary 3.3.1 Assume a random set S with plausibilistic trace ~ρ. Derive a possibility distribution by a
focused consistent transformation ~ρ 7→ ~π with focus ωk. Then ωk = maxωi∈Ω ρi iff the rank ordering of the
ρi is preserved in the πi, so that

ρi1 ≥ ρi2 → πi1 ≥ πi2 , 1 ≤ i1, i2 ≤ n. (3.1)

Proof. Denote ωl := maxωi∈Ω ρi. Case 1: Let (3.1) hold. If ωk 6= ωl, then ρk ≤ ρl, but πl ≤ πk = 1, which
violates (3.1). Therefore ωk = ωl. Case 2: Let ωk = ωl. Obviously ∀i1, i2 6= l, πi1 = ρi1 and πi2 = ρi2 , and
so (3.1) holds for them. And ∀i 6= l, both ρl ≥ ρi and 1 = πl ≥ πi. Therefore (3.1) holds in general.

If the example in Fig. 2 with ~ρ = 〈.8, .7, .2〉, maximum plausibility would select Ŝx and ~π = 〈1, .7, .2〉.

3.2. Dimensional Extension

A consistent transformation requires the modification of at least one of the ρi, which is changed to 1 in
order to possibilistically normalize ~ρ. However, it is possible to provide a maximum normalized element in a
manner which does not disrupt the other ρi at all, by simply leaving them all unchanged, but instead adding

a new element ρn+1 = 1.
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Figure 3. (Left) An inconsistent random set S in a normal universe Ω. (Center) In an extended universe Ω′. (Right) Its

dimensional extension Ŝn+1.

Definition 3.3.2 (Dimensional Extension) Given a possibilistically subnormal plausibility distribution
~ρ, let ~π′ = 〈1〉 + ~ρ, where + in this context is vector concatenation.

The effect is to replace the universe of discourse Ω with a new universe Ω′ = Ω ∪ {ωn+1}, and create a new
plausibility assignment which is a possibility distribution ~ρ ′ = 〈ρ′i〉, where ρ′1 = 1 and ρ′i = ρi−1, 2 ≤ i ≤ n+1.

Actually, the correct perspective is not so much that a new element ωn+1 is being added, as it is that
a random set already defined on Ω′, but for which ∃i, ρi = 0, is consistently transformed with a focus
ωk = ωn+1, effecting by (2.1) the transformation

~ρ = 〈ρ1, ρ2, . . . , ρn, 0〉 7→ ~π = 〈ρ1, ρ2, . . . , ρn, 1〉 , (3.2)

where ~π has yet to be appropriately ordered.

Corollary 3.3.3 Given an inconsistent random set S defined on Ω′ = Ω ∪ {ωn+1} such that

∀Aj ∈ F , ωn+1 6∈ Aj, (3.3)

then the focused consistent transformation S 7→ Ŝn+1 effects the transform of ~ρ 7→ ~π as in (3.2).

Proof. ρn+1 =
∑

Aj3ωn+1
mj = 0, so that ~ρ is as in (3.2). The result follows from (2.1), once ~π is sorted.

From the condition (3.3) above, S, while technically defined on Ω′, actually has weight only for A ⊆ Ω,
and so exists confined to the simplex 2Ω ⊆ 2Ω′

. Dimensional extension ((3.3.2) and (3.3.3)) projects S into
the rest of the space involving the new element ωn+1.

As an example, consider the random set S = {〈{x}, .6〉 , 〈{y}, .4〉} defined on Ω = {x, y} with ~ρ = 〈.6, .4〉.
From dimensional extension (3.3.2), π′ = 〈1, .6, .4〉 (once π′ is sorted) defined on Ω′ = {x, y, z}. The final
random set is Ŝn+1 = {〈{x, z}, .6〉 , 〈{y, z}, .4〉}, as shown in Fig. 3. When S is taken to be in Ω′, then
~ρ = 〈.6, .4, 0〉, as shown in the figure.

Geometrically, dimensional extension projects a subnormal fuzzy set to unity in a direction orthogonal to
all existing dimensions, while focused consistent transformations projects it to unity on one of the existing
dimensions. An example is in Fig. 4 for the subnormal plausibility assignment ~ρ = 〈.6, .8〉 regarded as a
fuzzy set in the fuzzy power set [0, 1]{x,y}. There are two focused consistent transformations ~πx = 〈1, .8〉 and
~πy = 〈.6, 1〉. The dimensional extension is ~πn+1 = 〈.6, .8, 1〉 for z = ω3.

4. Normalization of Random Intervals

Now consider possibilistic normalization of the trace of an inconsistent random interval. When F(A) is
inconsistent then focused consistent transformations must be modified to take into account the linear order
on IR.
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Figure 4. Dimensional extension and focused consistent transformation normalization.
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Figure 5. (Left) An inconsistent random interval. (Right) Its focused consistent transformation for κ = 4.

4.1. The Form of Possibilistic Histograms

Because F(A) is a finite collection, the trace ρ is fully defined by the finite collection of endpoints {lj , rj}.
After global reordering and removal of duplicates, these endpoints determine a class Γ = {Gk} ⊆ D which is
the finest partition of the closure of the support U(A) induced by the total intersections of the Aj with each
other and with all their intersections recursively, where 1 ≤ k ≤ Q − 1, N + 1 ≤ Q ≤ 2N , and ρ is constant
over each Gk ⊆ IR. For full details see [3].

An example is shown on the left of Fig. 5. Assuming a common axis x shown for x ∈ [0, 4], the half-open
intervals on the bottom are observed with the frequencies indicated by m(Aj). The partition Γ = {Gk} is
shown above it with U(Γ) = [0, 4] ⊇ U(ρ). The resulting piecewise-constant plausibilistic trace ρ(x) is shown
on top, which is possibilistically subnormal since A is inconsistent.



6

4.2. Concatentation Lattice

Because of the linear ordering of IR, operations on the Gk portions of the domain of a random interval are
very different from the operations on the focal sets of a finite random set.

Definition 4.4.1 (Concatenation) Assume two intervals I1, I2 ∈ D, I1 := [l1, r1), I2 := [l2, r2), and define
the relation I1 < I2 := r1 ≤ l2. Then the concatenation operation is

I1 ] I2 :=







[l1, r2), I1 < I2

[l2, r1), I1 > I2

I1 ∪ I2, otherwise
.

Note that I1 ∪ I2 ⊆ I1 ] I2.
Now given a random interval A, without loss of generality let the Gk be ordered so that Gk < Gk+1, 1 ≤

k ≤ Q − 2. Then Γ is the set of atoms of a lattice L ⊆ 2Γ with operations

∀I1, I2 ∈ L, I1 ∧ I2 = I1 ∩ I2, I1 ∨ I2 = I1 ] I2.

An element I ∈ L maps to a unique set of atoms denoted {GkI
} ⊆ Γ for Il ≤ kI ≤ Iu such that I =

⊎Iu

k=Il
Gk.

Therefore denote I1I2 := I1]I2, so that I = GIl
GIl+1 · · ·GIu−1GIu

. L is not a sub-lattice of 2Γ, is not closed
under unions, and is not distributive or complemented.

4.3. Focused Consistent Transformations in L

Since F(A) ⊆ L, therefore m can now be modified to be m:L 7→ [0, 1] with m(∅) = 0 and
∑

I∈L m(I) = 1
as before. In this space focused consistent tranformations now require an atomic normalizing interval Gκ ∈ Γ.
The focused consistent transformation algorithm is then modified to create a new consistent random interval
Âκ by affecting the transforms

∀Aj ∈ F(A), Aj 7→ Âj := Aj ] Gκ.

We have the following:

Proposition 4.4.2 Given an inconsistent random interval A with focus Gκ, then ∀I ∈ L,

m̂κ(I) =















∑Iu

k=Il
m(GIl

GIl+1 · · ·Gk), Iu = κ,
∑Iu

k=Il
m(GkGk+1 · · ·GIu

), Il = κ,

m(I), Il < κ < Iu,

0, otherwise

.

The right side of Fig. 5 shows the transformation of the left side when κ = 4. Note that not only is π

possibilistically normal, but that some of the endpoints have been lost in the creation of the new partition
Γ̂. In particular Ĝ2 = G2 ] G3 = G2 ∪ G3. Further, all the evidence supporting G5 has been added to that
of G4.
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