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possibilistic) representations and conversions to and among them
are established. Some properties of empirical random sets and
possibilistic  histograms  related to strong  probabilistic
compatibility are described. Finally, the nature of probability
distributions which are strongly stochastically compatible with a

Boston, https://doi.org/lO.1007/978-1-4615-5473-8_3 given possibility distribution, and the derivation of frequency

distributions from empirical random sets, are discussed.

3.1 Introduction

Possibility theory (de Cooman et al., 1995) is an alternative information theory
to that based on probability. ~ Although possibility theory is logically
independent of probability theory, they are related: both arise in Dempster-
Shafer evidence theory as fuzzy measures defined on random sets; and their
distributions are both fuzzy sets. So possibility theory is a component of a
broader General Information Theory (GIT), which includes all of these fields
(Klir 1993).

Zadeh’s concept of probabilistic-possibilistic compatibility (or consistency

* (Zadeh 1978)) is an example of the kind of principle which can be brought to

bear on the problem of deriving a coherent, synthetic GIT. In order to
accommodate the desired properties of possibilistic semantics, Joslyn (1993a)
has extended this idea to a principle of strong compatibility.
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Another example of a synthetic principle is the use of random sets—originally
developed as a branch of stochastic geometry (Kendall 1974)—to provide a
broad, unifying context within which to develop GIT (Goodman 1994). Some
properties of empirical random sets and possibilistic histograms are described
related to strong probabilistic compatibility. After introducing the fundamen-
tals of possibilistic mathematics and measurement, we will discuss possibilistic
histograms and the possibility of occurence, the nature of probability distri-
butions which are strongly stochastically compatible with a given possibility
distribution, and the derivation of frequency distributions from empirical ran-
dom sets.

3.2 Mathematical preliminaries

Assume a finite universe of discourse = {w;},1 < ¢ < n := ||, and let
D:={[0,b) CIR: a,b € IR,a < b} be the class of half-open intervals.

3.2.1 Random Sets, Intervals, and Evidence Measures

Given a probability space (X, X, Pr), then a function S: X + 29 — {0}, where
— is set subtraction, is a random subset of {2 if S is Pr-measurable, so that
VYA CQ,57'(4) € £. Thus a general random set S associates a probability
(ProS-1)(A) to each A C Q.

When € is finite, then following Dubois and Prade (1990), let m:2%
[0,1] be an evidence function if m(#) = 0 and )~ ;o m(A) = 1. Then S :=
{(A;,m;)} is a random set where 1 < j < N := [§] < 2", m(4,) > 0, and
mj = m{4;).

The focal set of a random set is F(S) := {A4;} with core C(F(S)) =
Na,ers)4i and support U(F(S)) = Uy, exs)Ai- S is called consistent
when C(F(S)) # 0. Let I'(S) := {Gx} € 2% — 0,1 < k < Q, be the partition
of U(F(S)) induced by all the mutual set intersections and subtractions of the
A; (in other words, an equivalence class of () representing all the atoms of the
set union/intersection lattice induced by the focal sets).

A random interval .4 is a random set on @ = IR with F(.A) C D. Denote
the focal sets of A as Aj = [l;,r;) C IR, l; < ;. From (Joslyn 1997a) we have:

Proposition 1 Given a random interval A, then N +1 < Q < 2N.

Random sets are mathematically isomorphic to Dempster-Shafer bodies of
evidence (Guan and Bell 1992). The plausibility and belief on YA C Q are

Pl(4):= Y m;, Bel(4):= ) my (2)

Aj LA AjCA
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where A | B denotes AN B = . Pl and Bel are generally non-additive fuzzy
measures (Wang and Klir 1992), and are dual, in that VA C Q, Bel(4) =
1—"PI(A). In general only plausibility will be considered below.

Define the plausibilistic trace (one-point coverage function) of S as Qe
[0,1] where p(w;) := Pl({w;}), and in vector form 7= (p;), with pi = plw;) =
ZA,- 5w; M- For random intervals, denote p4: IR +~ [0, 1] so that Vz € IR, pa(z) :

PI({z}) = 54,5, m;.

3.2.2 Probability and Possibility

When F(5) is specific, so that V|A;| = 1, then Pr := Pl is an additive proba-
bility measure with

VA,BCQ,  Pr(AUB)=Pr(4)+ Pr(B) — Pr(AN B), 3)

and p = (p;) := jis a probability distribution with additive normalization
>.;Pi = 1 and operator Pr(4) = 2 w.caPi- Statistical entropy H(p) :=
— >i=1 pilog,(p;) is then the canonical measure of information in probability
theory (Klir and Yuan 1995), and the probability distribution with maximal
entropy is the maximally uninformative probability distribution denoted p*
which results when Vi, p; = 1/n (Joslyn 1994). Given a random set S, then
the Maximum Entropy Principle (MEP) (Klir 1993) has been applied (Dubois
and Prade 1982) to derive a canonical probability distribution p° approxi-
mating S, replacing each subset evidence value m(A;) with the MEP uniform
probability distribution over its members, so that

Wweft, )= 3 . @
Ajdw J

When S is consonant (F(S) is a nest), so that (without loss of generality
for ordering, and letting Ao := 0) Aj—; C A;, then Il := Plis a possibility
measure and 7 := Bel a necessity measure,! with VA, B C QI(AUB) =
ITI(A) v II(B), where V is the maximum operator. Now # = (m) == Plisa
possibility distribution with maximal normalization and operator, respectively

v:lTi =) (5)

o) = \/ m. (6)

wieA
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In possibility theory entropy is replaced by nonspecificity (Klir and Yuan
1995)

n T .
N(@) = Y (mi — mig1) logy(i) = > milog, (s_ j 1) ; (7)
i=1 i=2
where w1 := 0 by convention. The possibility distribution with maximal non-
specificity is the maximally uninformative possibility distribution (Klir 1993)
denoted 7, resulting when Vi, 7} =1 (Joslyn 1994).

The condition (5) for Pl to be a possibility distribution is actually achieved
whenever S is even consistent (which is implied when S is consonant). When S
is consistent but not consonant, then even though Plisa possibility distribution
by (5), Plis not a possibility measure II. Then there is a unique possibilistic
approximation IT* to P1 achieved by invoking (6) on 7 (Joslyn 1994).

If S is not even consistent, then there are well-justified possibilistic nor-
malization methods (Joslyn 1993c) such as consistent transformations (Joslyn
1993c, 1997b), which select certain elements or regions of 7 to be “elevated”
to be in a core.

The following result will be useful below:

Proposition 8 If S is consistent, then m(4) > 0 — P1(4) = 1.

3.2.3 Possibilistic-Probabilistic Compatibility

Measures of compatibility? between a probability and a possibility distribution
are available (Delgado and Moral, 1987). The best known of these is Zadeh’s
(1978) measure ~y(p,7) := p -7 = > i, pimi, where v(7,7) = 1 indicates
maximal compatibility and v(p, @) = A; 7; minimal compatibility, and A is the
minimum operator.

Many methods are available to convert a given probability distribution to a
possibility distribution, and vice versa (Klir and Yuan 1995, Sudkamp 1992).
One of the most prominent is the maximum normalization or ratio scale method
(Klir 1990).  Given a probability distribution p, then let 7™:Q  [0,1] be
a possibility distribution where 7™ (w;) = #[® := p;/\/i_, pi. We have the
following results (Joslyn 1994):

Proposition 9 f; =7 /3L 7.
Proposition 10 If y(g,#™) = 1 then =" and 7™ = 7*.

Joslyn (1994) has considered the semantics of possibility theory from a num-
ber of different perspectives, including graduated, physical, and modal concep-
tual frameworks. In particular, he has considered what an appropriate relation
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between probabilistic and possibilistic representations of the same problem do-
main would be (1993a), and has asserted the following strong principle.

Principle 11 (Strong Probability-Possibility Compatibility (ppc)) A
given probability Pr and possibility measure II are strongly compatbile iff YA C
,Pr(A) >0 + II(A).

It follows that Pr(A) = 0 + II(A4) < 1, n(A) > 0 = Pr(4) > 0, and n(A4) =
0 — Pr(A) = 0. At the distribution level it follows that Vw € ©,p(w) > 0 &
m(w) =1 and p(w) = 0 4 7(w) < 1. Finally, if the distributions 7 and 7 are
strongly compatibile, then v(p, ) = 1.

Note that the PPC (11) is not a definition or a theorem, but is rather a prin-
ciple asserted as a semantic criterion, and is thus necessarily extra-theoretical.
Detailed arguments justifying this position are offered elsewhere (Joslyn 1993a,
1994). Suffice it here to say that the PPC states that something having non-zero
probability is likely, and therefore given sufficient time eventual, and therefore
equivalent to its being completely possible. Conversely, a properly possible event
(0 < II(A) < 1) must be of probability measure zero, and probability zero may
or mav not indicate proper possibility.

3.3 Possibilistic measurement from consistent random intervals

Measurement methods for possibility distributions based on the observation
of random intervals have been developed (Joslyn 1992, 1993b, 1994, 1997a,
1997b). These stand in sharp constrast to traditional measurement of point
values or disjoint subset observations.

3.3.1 Probabilistic Measurement

Assume a counting function ¢: Q2 — W such that ¢; := c¢(w;) is the count
of the occurrences of w; in a statistical record. Then a frequency distribu-
tion is a function f:Q + [0,1] where f(w;) = fi := ¢;/).;ci. Denote the
vector f := (f;). The function P:2% - [0,1] is a frequency measure where
VA C Q,P(A) := Y, c4 fi. Now fis a natural probability distribution with
normalization 3, f; = 1, and P is a natural probability measure as in (3).

3.3.2 Random Set Measurement and Possibilistic Histograms

Consider now instead observing subsets B, C 2,1 < s < M denoted as a
vector B := (B;). The set of observed subsets produced by eliminating any
duplicates in B is an empirical focal set FF := {A;}, where N < M and
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VA; € FE,3B, € §, B; = A;, and inclusion of an element in a vector is
defined as appropriate.

Denoting the number of times that a given set B, = A; occurs in B as
C(A;), then the set-frequency function is

C; _C;
EA;;E.FB C.? M,

where C; := C(A;). mP is clearly an evidence function, which in turn gener-
ates an empirical random set denoted SZ. If FF is a disjoint class, then SZ
generates a probability distribution on I'(S). But if S is consistent, then the
empirical possibility distribution is

mP: FE s [0,1], mP(4;) = (12)

m(w) = Z mf = —Z—:&IZ—& (13)

A_faw

When FZ C D, then this method produces an empirical -random interval
AP. When AF is consistent, then 74 := p4 derived according to (13) can
be properly described as a possibilistic histogram. These are similar to ordi-
nary (stochastic) histograms, but generated from possibly overlapping interval
observations, and thus governed by the mathematics of random sets. In par-
ticular, each possibilistic histogram is a fuzzy interval (Joslyn 1997a). In the
sequel it will be assumed that A” is consistent, and thus 74 from (13) is a
possibility distribution.

An example is shown in Fig. 3.1. On the left top, four observed intervals are
shown. The middle two occur with frequency 1/2, while each of the top and
bottom have frequency 1/4. Together they determine .A¥. The step function
on the right is the possibilistic histogram 7 derived from (13). It can be briefly
stated in vector form as ¥4 = (1/4,1,1/2,1/4), where the values are taken on
each of the piecewise constant segments

I(S) = ([1,1.5),[1.5,2], (2,3.5], (3.5,4]), (14)

of the step function, as shown in the figure.

3.3.3 Realization

‘We will next consider a simple thought experiment in depth in order to motivate
random interval observations.

Consider Fig. 3.2. There is a length of screen {} against which an experi-
menter throws Z balls, each striking somewhere between points @ and b. A wall
rests in front of the screen, and each of two observers can see a different portion
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Figure 3.1 (Left) Observed focal elements of a random interval. (Right) Possibilistic
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Figure 3.2 Observations resulting in frequency distributions.
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of the screen through her own hole in the wall. Observer O; sees 4; := [a,c)
and observer Oy sees A, := [c,b]. Each observer then reports the count of the
number of balls €, C; she sees through her hole. This is then predicated to be
the same as the actual number of balls ¢y, ¢, striking each section of the screen.

Here we recognize ¢; as the counting function from Sec. 3.3.1 over the uni-
verse of discourse I' := {4;, A2}, where C; := ¢; and Z = 2ici= 2,0 s0
that frequencies f; = ¢;/Z can be derived.

Now consider a modification shown in Fig. 3.3. The holes in the wall have
been moved so that O; sees [a,d] = G1UG: = A;, O, sees [¢,b] = GoUG3 = A,
and both see [c,d] = G, = A; N A;. As before, each observer reports the count
C1, C; she observes, and we again wish to derive the actual number of hits ¢,
in each of the disjoint regions G so that we can then determine frequencies fy.

Figure 3.3 Observations resulting in empirical random sets.

We must make a number of assumptions now. First, the records of the
hits reported by each observer cannot be correlated, rather only a statistical
description of the collection of observations, in this case the total number of
hits seen by each observer, can be reported. If the experimenter knew for any
particular ball toss which of the observers (or both) reported, then he would
be able to disambiguate where the ball struck within a particular Gy € I.

Second, our knowledge of the outcome comes only from the reports of the
observers. In particular, the experimenter has no independent knowledge as to
the position where the balls hit. Thus while there may be “real” positions of
the ball hits against the wall, all that is known is whether a hit was seen in A,
or Ay. Furthermore, the total number Z of balls thrown by the experimenter
is not known. This we also wish to infer from our knowledge of the Cj.
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Under these conditions clearly the ¢; are underdetermined. Thib is a linear
problem where

T 3 i zZ
13 0fetf= |8 |, (15)
03 @ Cy
additionally constrained by Ve¢; > 0, with solution
1 0 -1 Z
-1 1 1 O | =8t (16)
1 -1 0 Cs

Knowledge of any three of ¢1, ¢z, c3, Z,Cy,C2 determines the other three, but
all we have are C, Cs.

In particular, we wish to derive knowledge of Z in order to determine the
cx. While C1, Cs do not determine Z, they do bound it, and bounds are also
available on all the ¢; and f,. These bounds are determined as follows. First,

e =Z-0220 = Z>(Cy, c3=2-C120 > Z>C; (17

=0C1+C—-2Z220 —= Z<C+0Cs, (18)
so Z € [01V02,01 +Cz]. Next, c; =C1 +Cy — Z, 50

2 €[(Ci+C)-CiVC,,(Ci+C2) - (C1+C2)]=[C1 AC,0.. (19)
Then ¢y = Z —Cy and e; = Z — Cy, so

= [(01 V() —Ca, (Cy +Cg)—02], cz € [(CL1VC)—Ch, (Ch +C‘2)—C’1].

Assume without loss of generality that C; < C,. Then it follows that -
c €[0,C1ACs), e3€[Cy—C1,C1V Ty, (21)

which generalizes to
c1hes € (0,0 AC,, Ve €[|C; —Cy,Cy v Cy). (22)

For frequencies we have

C]_AC2
civ(ey’

Cl A 02 |C] - Czl .Cl V Cz
!01'1-02]’ flvf3€[clvczicl+02 )
(23)

fr€ [ o] . Fihfy € [0
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and finally it is interesting to note that

CiACy; CiACy fcl—Cﬂ CL VvV Cy
htfs € [Cl VG, Cr Czi’ , fitfs € [——-*Cl VO, ,1] , Jat+fa € [ ' Cr ot 02]
(24)

As a numerical example, let C; = 10,C, = 15. Then (abusing interval
notation for vectors slightly)

Ze[15,25,  €€[(0,10,5),(10,0,15)],  f e [(0,2/3,1/3),(2/5,0,3/5)].
(25)

In each of these cases, the range of Z (or the others), represents the amount
of uncertainty present in the overall measurement, and in particular the extent
to which we are ignorant of the number of balls which struck in the intersection
Gz. Consider the limits conditions on Z. If Z = C; V C» then from (18)
ca = C1 A Cy, so that no balls struck in the Gy not included in the A; for which
Ci =CiVCy. If Z=C)+ Cythen ¢3 = 0, so that no balls struck in the
intersection. Finally, because C1,Cs > 0,if C, + Cy = C; V Cy then C; = 0 or
Cy =0, so that all the balls struck in the G not included in the A; for which
C; = 0.

Of course, we recognize this as a special case of the measurement of a
random interval, with C; the set-counting function for the region A;, where
M=x¥ ;=1 Cj. Since Dempster’s early work (1967) it has been known that
no additive probablllty distribution p is generally available, but rather a class
of measures Pr are identified which are bounded by [Bel, P]].

The random set interpretation resolves the uncertainty present in the inter-
vals by representing the measurement as a single entity in a more abstract space.
Thus no matter the value of Z, the constraints C} = ¢; + ¢2,C5 = ¢3 + ¢3 are
always present. Or in other words, consider the interval expression of the quan-
tity ¢ := C1 +C2 = (¢c1+¢2) + (co +¢3), generalized as ¢ = ¢y Acg+2¢2+¢; Ves.
Recalling that a,b > 0— aAb+ |a—b| = a + b, we have

q € [0, C1 A Cz] + 2[01 A 02, 0] + “Ol = C2| Cl vV C?] (26)
= R(CLVE)+|Ci = Ca,Ci ACy +C1V Oy (27)
= [01 +Co, 4 +Cz] =C1+C, (28)

uniquely. Furthermore, in the general case ¢ is substantially more underdeter-
mined, in that the matrix in (15) is N x @, and thus from (1) is rarely even
square, let alone invertible.

So in general, if a measured random set is consistent or specific, a direct
distributional representation is available in possibilistic or probabilistic forms
respectively. But otherwise, if a distributional representation is required, then
the direct approach will be infeasible. Instead we must look for other methods
which transform the given data into a representational form.
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3.4 Strongly compatible probability distributions

From the natural language perspective, the primary semantic criterion for pos-
sibility is that the occurrence of an event requires maximal (unitary) possibility.
In a possibilistic histogram the occurring events are exactly those B, € B which
have been observed. So this condition is easily met by possibilistic histograms.

Corollary 29 If F¥ is consistent, then VB, € B, II(B,) = 1.

Proof: Fix B;. Then C(B;) > 1, so m(B;) > 1/M > 0. The result follows
from the corrolary (8) and the consistency of FE. ]

Probability distributions which conform to the PPC with a possibilistic his-
togram should also be considered. Under the PPc (11), it is necessary that
p(w) = 0 wherever n(w) < 1, that is Yw ¢ C(FF). In the example in Fig. 3.1,
that would yield p > 0 only on the interval C(w) = [1.5,2). No further in-
formation would be provided by =, and so the MEP would yield the uniform

probability density
2, wel[l5,2)
W)= { 0, elsewhere L

This result makes complete sense in the context of the nature of subset
measurements. Given a consistent set of observed intervals, if they are all to be
believed then all that can be said is that the event actually happened somewhere
in the core. There the possibility is unitary, and by the PPC the probability
is positive. But there is no further information about the likelihood of the
event being anywhere particular inside the core, thus requiring the maximally
uninformative probability distribution p*.

The fact that Yw € U(w),w & C(n),0 < m < 1 indicates that it is somewhat
possible for another observation, perhaps at another time, to be found some-
where between the core and the edge of the support, but not completely possible,
since nothing can be said to have been actually observed there yet. Thus the
subset measurements give no likelihood information about the occurrence of an
w in this region, and by the PPC p = 0.there.

If S¥ is inconsistent, and thus a consistent approximation must be made,
then for a focus wy € 2, C(SF) = {wp}, and so p will be a Dirac-delta function
at wy.

3.5 Frequency distributions from empirical random sets
It is interesting to consider how a purely “probabilistic” treatment would ap-

proach set-statistics. In order to simplify the problem, return to the case of
two overlapping observations on a discrete universe, letting 2 = {a,b, ¢} and
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F(S) = {{a,b},{d, c}} with set-frequencies my,ma so that my +my = 1. Un-
der the assumption that Pr should have an additive probability distribution
p: Q= [0,1], then

1 1 1\ /p(a) 1
11 0] {o }={wm]. (31)
011 p(c) ma

which has the solution p(a) = m;,p(c) = mz2, p(b) = 0. This is entirely unsat-
isfactory, and maximally incompatible with the possibilistic results above: it
eliminates probability exactly on b, the point where there is the most evidence,
and where in the possibilistic histogram w(b) = 1.

As above with the observation of the failure of the direct approach for dis-
tributional representations, in general the matrix in (31) is N +1 x n, and thus
rarely are there any feasible solutions for non-negative probabilities. Other
methods which transform the set-based data must be used, for example trans-
lating the counts on subsets into counts on elements, thus establishing a map-
ping C' > c. There are a number of ways in which that could be done.

3.5.1 Duplicated Counts

We could say that a nonspecific observation is really an observation of every
element of the subset. Then each observation of a subset B, would contribute
one element count for every w € B,. Then the overall element count is

VweQ, cw) =Y G (32)
Ajdw

Corollary 33 )

clw
T e AT -

Proof: ‘
__w) c(w) _ c(w)

flw)= YoeatWw)  YoeaXa5uCi X a;er= CilA;] (35)
| |

By this method, the example in Fig. 3.1 yields the frequency distribution
F=1(2/9,4/9,2/9,1/9). (36)

similarly valued over the piecewise constant segments in (14). Note that this
is identical to 7 for elements having the same numerator, but the denominator
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changed from 4 (which is 3 C;) to 9 (which is 2 c(w) = 3 Cj|A;]). In fact, the
effect of this count duplication method is to establish a maximum normalized
ratio scale between 7 and f.

Theorem 37 Given a consistent FF with a frequency distribution f deter-
mined by (32), then Yw € Q,

_a@) W)
fO=srar =95 5

Proof: From the possibilistic histogram formula (13) and (32), Vw € Q, M7(w) =
24,50 Ci = c(w). Therefore from the corollary (33),

c(w) Mm(w) (w)
f w) = = — . 39
O B el ™ e~ e G &
The second result follows from the ratio scale frequency conversion (9). u

Thus the disadvantages of duplicating counts like this are clear. First, fre-
quency additivity is violated because

Y=Y Sazc. (40)
wEA; WEA; Aydw

Also, the PPC is generally violated in virtue of the ratio scale frequency con-
version, as shown in Prop. (10).

3.5.2 Distributed Counts

Instead of a subset count contributing multiple element counts, the single subset
count can be additively distributed amongst the w € A. Since there is no further
information about how to distribute the count, then by the MEP a uniform
distribution should be used. Then the element count for eachw € Q is

Vwe, ow)=3 G (41)
B Ajdw IA‘?I
Corollary 42 f(v) = c(w)/M.
Proof: Because
Zc(w)‘:.zz-%j—z %‘4—"—'= Ci=M, (43)
weN WwEN A; 3w I -fl A;EFE ’ j] A;EFE
therefore
) ) (44)

Eweﬂc(w) a M-
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u
By this method, the example in Fig. 3.1 yields a frequency distribution

F=(1/4,11/24,5/24,1/12). * (45)

Not surprisingly, this method is closely related to the applications of the MEP
as discussed above.

Theorem 46 Assume an empirical random set S¥ and let f be a frequency
distribution determined by (41). Then f is the maximum entropy probability
distribution pS* from (4).

Proof: From (41), (42), the set-frequency definition (12), and the maximum
entropy probability distribution formula (4), then Vw € 0,

=92 =3 G e, (47)
’ M Ajdw IAJ]M AjSw IAJI
|

Notes

1. Since results for necessity are dual to those of possibility, only possibility will be dis-
cussed in the sequel.

2. The term used in the literature is actually “consistency”, so to avoid confusion with
random set consistency, we will use “compatibility”.
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