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Abstract. Ontologies, taxonomies, and other semantic hierarchies are
increasingly necessary for organizing large quantities of data. We con-
tinue our development of knowledge discovery techniques based on com-
binatorial algorithms rooted in order theory by aiming to supplement the
pseudo-distances previously developed as structural measures of vertical
height in poset-based ontologies with quantitative measures of vertical
distance based on additional statistical information. In this way, we seek
to accommodate weighting of different portions of the underlying ontol-
ogy according to this external information source. We also wish to im-
prove on the deficiencies of existing such measures, in particular Resnik’s
measure of semantic similarity in lexical databases such as Wordnet. We
begin by recalling and developing some basic concepts for ordered data
objects, including our pseudo-distances and the operation of probability
distributions as weights on posets. We then discuss and critique Resnik’s
measure before introducing our own sense of links weights and weighted
normalized pseudo-distances among comparable nodes.

1 Introduction

We are pursuing approaches to knowledge discovery based on combinatorial al-
gorithms rooted in order theory [8], casting databases as ordered combinatorial
data objects equipped both with inherent semantics and appropriate quantita-
tive measures to support user-guided discovery tasks such as search, retrieval,
discovery, anomaly detection, linkage, and alignment, with applications in intel-
ligence analysis, homeland defense, computational biology, and law enforcement.

Ontologies, taxonomies, and other semantic hierarchies are increasingly neces-
sary for organizing large quantities of data. Recent years have seen the emergence
of a prominent example in the Gene Ontology (GO)3 [5], a large, (> 16K node)
multi-taxonomy of biological functions and processes annotated to thousands
of genes. Other cases include the UMLS Meta-Thesaurus [2], object-oriented
typing hierarchies [12], and verb typing hierarchies in computational linguistics
3 http://www.geneontology.org
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[3]. Cast as Directed Acyclic Graphs (DAGs), these all entail partially ordered
sets (posets) [16]. And other order-theoretical techniques such as formal concept
analysis [4] and reconstructibility analysis, which uses lattices of reconstruction
hypotheses of relational databases cast as irredundant covers of a space of vari-
ables [10], are available to provide order-theoretical representations of relational
data objects. Research in fundamental properties and techniques for ordered
data objects is sorely lacking; and their increasing size and the need for such
tasks as linkage and federation of multiple ontologies constructed on similar do-
mains by different organizations, creates unmet challenges in computer science
and combinatorial algorithms.

In prior work we have explored some order-theoretical properties of semantic hi-
erarchies such as measures of distance, level, and size in posets [6]. We have also
developed the POSet Ontology Categorizer (POSOC)4 for the task of “catego-
rization” of gene lists in the GO, represented as a multi-labeled partially ordered
set (poset), which we call a POSet Ontology (POSO) [7,9,17].

POSOC takes as a query a list of genes of interest, and then calculates a score for
each node in the GO to represent how well that node best captures the overall
distribution and location of the query in the poset. This score, whose ranks
are as illustrated in an example in Fig. 1, depends on the vertical “separation”
from the scored node to those nodes below it where query terms sit. We thus
developed the concept of a pseudo-distance δ(a, b) between comparable nodes
a ≤ b to measure this vertical distances as a property of the collection of lengths
of the chains in the chain decomposition of the poset interval [a, b].

It has been noted that our approach suffers from a deficiency, in that the struc-
ture of the GO is not uniform, but may be “denser” in certain regions and
“sparser” in others, depending, for example, on the attention paid by the au-
thors, or even the vagaries of funding of the research which supports construction
of the GO. As an illustration, consider the taxonomy on the left of Fig. 2. While
it appears that “grey wolf” should be as “close” to “animal” as is “ungulate”,
in fact we know that this isn’t the case.

So our structural measure based on chains lengths should be supplemented by an
approach to “stretch” or “shrink” links in the structure based on other available
information. We propose to capture this additional information by a probability
distribution p cast onto the POSO, and then use p to modify POSOC’s current
pseudo-distances δ(a, b) to become a weighted pseudo-distance δw(a, b) reflecting
this degree of “stretch”.

Here we do not presume any particular source for these probabilities. In practice,
we’re inspired by similar motivations as Lord et al. [13], who constructed p as
the frequency with which GO node terms appeared in SWISS-PROT-Human
protein database. They then used Resnik’s measure of semantic similarity [15]
developed for Wordnet5 to measure the semantic distance between GO nodes.

4 http://www.c3.lanl.gov/~joslyn/posoc.html
5 http://www.cogsci.princeton.edu/~wn
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GO:0003673 : Gene Ontology

GO:0008150 : biological process 26 8

 GO:0008151 :
cell growth and/or maintenance: 20 7, 97%

 GO:0008152 : metabolism: 8 6, 97%

   GO:0006139 : nucleobase,
nucleoside,  nucleotide and

nucleic acid metabolism:  7 5, 54%

has-part

GO:0009058 :
biosynthesis: 68, 41%

 GO:0009059 :
macromolecule
biosynthesis:

32, 41%

 GO:0006412 :
protein biosynthesis:

14, 41%

GO:0006497 :
protein lipidation: 1 1, 41%

 GO:0019538 :
protein metabolism: 11, 41%

GO:0042157 :
lipoprotein metabolism: 14, 41%

 GO:0042158 :
lipoprotein biosynthesis; 6 4, 41%

GO:0006464 :
protein modification: 3 3, 41%

GO:0005575 :
cellular component

GO:0003674 :
molecular function

has-part
has-part

GO:0016070 :
RNA metabolism: 2 2, 54%

GO:0006396 :
RNA processing :

4, 36%

GO:0006401 :
RNA catabolism:

16, 10%

GO:0006397 :
mRNA processing:

13, 15%

GO:0008380 :
RNA splicing:

10, 18%

 GO:0006371 :
mRNA splicing : 5, 15%

GO:0006402 :
mRNA catabolism:

17, 5%

Fig. 1. Partial output from POSOC for a sample query [7]. Nodes in the GO
are annotated by the rank of their score and the percentage of the query they
cover.
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Fig. 2. A semantic hierarchy (left); with stretched links (right).

In this paper, we begin by recalling and developing some basic concepts for
ordered data objects, including our current pseudo-distances δ and the operation
of probability distributions as weights on posets. We then discuss and critique
Resnik’s measure of “semantic similarity” in weighted POSOS before introducing
our own sense of link weights and weighted normalized pseudo-distances among
comparable nodes.
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2 Preliminaries on DAGs, Posets, and Covers

Assume a finite set of nodes P with |P | ≥ 2. Then, assume a directed acyclic
graph (DAG) Γ ⊆ P 2 where γ = 〈a, b〉 ∈ Γ is a directed edge from a node
b ∈ P to another a ∈ P . We also sometimes use γ(a, b) to indicate a particular
edge 〈a, b〉 ∈ Γ . Then a chain (specifically, a DAG chain) of length h ≥ 2 is a
collection of edges

C = 〈γ1, γ2, . . . , γi, . . . , γh−1〉 ⊆ Γ (1)

where, letting γi = 〈ai, bi〉, for h > 2 and 1 ≤ i ≤ h − 1, we have bi = ai+1.

We also represent Γ as a relational structure Γ = 〈P,⇐〉, where ⇐ ⊆ P 2 is a
relation on P such that ∀a, b ∈ P, a⇐ b ↔ 〈a, b〉 ∈ Γ , so that there’s a direct
link in the DAG from b “down” to a.

The DAG Γ uniquely generates two mathematical structures:

– Let V(Γ ) := 〈P,≺〉, be the cover relation, or just cover, where ≺ is the
transitive reduction of ⇐ [1]. So a ≺ b when γ(a, b) is an edge in Γ which is
non-transitive, that is, 〈γ(a, b)〉 is the only chain C with a1 = a, bh−1 = b.

– Let P(Γ ) := 〈P,≤〉 be the partially ordered set (poset) defined by Γ by
transitive and reflexive closure of ⇐. Below we sometimes use just P when
clear from context. So a ≤ b when there’s any chain C with a1 = a, bh−1 = b.

Fig. 3 shows an example DAG Γ on P = {0, A, B, . . . , K, 1}, with two transitive
edges D⇐B, I ⇐ 1 shown as dashed lines, removal of which yields the cover
relation V(Γ ). P(Γ ) would result from both retaining D⇐B and I ⇐ 1 and
adding all other transitive links, e.g. H ⇐B, E ⇐C. Note the inclusion of the
special nodes 0, 1 ∈ P as global bounds, which we will always assume are present.

B

F G

A

I

H

C

E J

D

1

K

0

Fig. 3. A bounded DAG.
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Given a DAG Γ , we generally focus on the corresponding poset and cover re-
lations. In particular, below we will use a ≤ b to mean that a ≤ b in the poset
P(Γ ), and a⇐ b, or γ(a, b), to mean that a ≺ b in the cover V(Γ ). ∀a ∈ P , let

↓ a := {b ∈ P : b ≤ a}, ↑ a := {b ∈ P : a ≤ b},

↓̇ a := {b ∈ P : b ≺ a}, ↑̇ a := {b ∈ P : a ≺ b}
be its ideal, filter, children, and parents respectively.

Two nodes a, b ∈ P are called comparable, denoted a ∼ b, when either a ≤ b
or b ≤ a. When a, b ∈ P, a �= b and a ≤ b, we simply say a ≤ b ∈ P . Two
nodes a, b ∈ P are non-comparable if a �∼ b. A collection of nodes A ⊆ P
is also called a chain (specifically, a poset chain) if ∀a, b ∈ A, a ∼ b, and an
antichain if ∀a, b ∈ A, a �∼ b. The height H(P) of a poset, or just H, is the size
of the largest chain, and the width W(P) is the size of the largest anti-chain.

Note that unlike in lattices, when P is a general poset then for a pair of nodes
a, b ∈ P the concepts of least upper bound a∨ b and greatest lower bound a∧ b,
when they exist, are not singular. Rather, a ∨ b, a ∧ b ⊆ P are the sets of the
(possibly multiple) least upper (greatest lower) bounds of a and b. For example,
in Fig. 3 we have E ∨ J = {C, K} ⊆ P .

Below assume two comparable nodes a ≤ b ∈ P . Then let

C(a, b) := {C1, C2, . . . , Cj , . . . , CM} ⊆ 22P

be the set of all DAG chains from a to b. [a, b] := {c ∈ P : a ≤ c ≤ b} is the in-
terval from a to b and is always a bounded sub-poset of P with [a, b] =

⋃M
j=1 Cj .

From Dilworth’s theorem [16], we know that M ≥ W([a, b]). But otherwise, while
bounded, the number M of chains is generally arbitrary with respect to a and b.

Let hj := |Cj |− 1 be the length of a particular such chain Cj ∈ C(a, b). While in
principle 0 ≤ hj ≤ H− 1, note that hj = 0 ↔ a = b, so in practice hj ≥ 1. Also
define h̄j := hj/(H− 1) as a chain length normalized to the height of P . Let

h(a, b) := 〈h1, h2, . . . , hj , . . . , hM 〉 , h̄(a, b) := h/(H− 1)

be the vectors of chain lengths connecting a to b. We also denote

h∗(a, b) = min
hj∈h(a,b)

hj, h∗(a, b) = max
hj∈h(a,b)

hj ,

h̄∗(a, b) = min
h̄j∈h̄(a,b)

h̄j, h̄∗(a, b) = max
h̄j∈h̄(a,b)

h̄j .

Finally, note that for a �= b and DAG chain Cj , we have Cj = {a, b}∪C for some,
possibly empty, chain C = {c2, c3, . . . , chj−1} ⊆ P , so that for 2 ≤ i ≤ hj − 1,

a ≺ c2 ≺ c3 ≺ . . . ≺ chj−2 ≺ chj−1 ≺ b. (2)
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3 Pseudo-distances

Our approach begins with measures between comparable nodes a ≤ b, which
indicate how “high” b is above a. A pseudo-distance is a function δ: P 2 → IR
where ∀a ≤ b ∈ P, h∗(a, b) ≤ δ(a, b) ≤ h∗(a, b), provideing some aggregate
measure of the number of “hops” between two comparable nodes. There is also
a normalized form δ̄ := δ/(H−1) which measures what proportion of the height
of the whole poset P is taken up between a and b, so that δ̄(a, b) ∈ [0, 1].

Current pseudo-distances implemented in POSOC include:

– Minimum chain length: δm(a, b) := h∗(a, b), δ̄m(a, b) := h̄∗(a, b)
– Maximum chain length: δx(a, b) := h∗(a, b), δ̄x(a, b) := h̄∗(a, b)
– Average of extreme chain lengths:

δax(a, b) :=
h∗(a, b) + h∗(a, b)

2
, δ̄ax(a, b) :=

h̄∗(a, b) + h̄∗(a, b)
2

.

– Average of all chain lengths:

δap(a, b) :=

∑
hj∈h(a,b) hj

M
, δ̄ap(a, b) :=

∑
h̄j∈h̄(a,b) h̄j

M
.

In our example in Fig. 3 (recalling that transitive edges are removed from the
cover relation ≺), we have H(P) = 6. Considering D ≤ 1, then W([D, 1]) = 3,
while M = 5, and

C(D, 1) = { D ≺ E ≺ I ≺ B ≺ 1, D ≺ E ≺ I ≺ C ≺ 1,

D ≺ E ≺ K ≺ 1, D ≺ J ≺ C ≺ 1, D ≺ J ≺ K ≺ 1},
h(D, 1) = 〈4, 4, 3, 3, 3〉 , h̄(D, 1) = 〈4/5, 4/5, 3/5, 3/5, 3/5〉 ,

δm(D, 1) = 3, δx(D, 1) = 4, δax = 3.5, δap(D, 1) = 3.4,

δ̄m(D, 1) = 0.60, δ̄x(D, 1) = 0.80, δ̄ax = 0.70, δ̄ap(D, 1) = 0.68.

4 Weighted Posets

Our overall motivation is to improve on the quantitative approach which Lord
et al. [13] and Resnik [15] brought to measures of distance (in their language,
“semantic similarity”) in taxonomies equipped with probability distributions. To
do so, we need to understand the basic operations of probabilities on posets.

Definition 1 (Weighted Poset). Define a weighted poset as a structure O :=
〈P(Γ ), p〉, where p: P → [0, 1] is a probability distribution on the nodes P of the
poset P(Γ ), so that

∑
a∈P p(a) = 1.
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For any node b ∈ P , what we will call a “beta” function β: P → [0, 1] is a kind
of probability measure over Γ , defined as

β(b) :=
∑

a≤b

p(a) =
∑

a∈↓ b

p(a). (3)

Fig. 4 continues our example with β(a) to the right of each node, and p(a) below
it. Weights are also shown on links, which will be discussed in Sec. 7 below.

B 0.7
0.0

F 0.0
0.0

.7

G 0.0
0.0

A 0.0
0.0

.7 I 0.7
0.5

H 0.0
0.0

0.0

.7

C 0.9
0.0

E: 0.2
0.0

J: 0.4
0.2

D: 0.2
0.2

.5

0 .2

.2

.5

1 1.0
0.0

.3 .1

K 0.5
0.1

.5

.1
.3

0 0.0
0.0

Node: beta
p

Fig. 4. An example of a weighted poset O.

β is what’s known as an isotone, or order-preserving, map on P , which is crucial
in Monjardet’s general theory of metrics in posets [14]:

Proposition 1. a ≤ b → β(a) ≤ β(b).

Proof. Follows from a ≤ b → ↓ a ⊆ ↓ b, Eq. (3), and p(a) ≥ 0. ��

5 A Mathematical Aside

We are regretfully ignorant of literature concerning discrete probability distribu-
tions like p on finite ordered sets, and yet we can note some intriguing connections
to some powerful formalisms. In particular, let B(O) := {a ∈ P : p(a) > 0} ⊆ P
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be the base of O. Then consider the case when P is a Boolean lattice, in par-
ticular the power set 2Ω on some underlying finite set Ω. β then is the belief
function Bel on Ω from Dempster-Shafer evidence theory [11], and Eq. (3) be-
comes ∀A ⊆ Ω, Bel(A) =

∑
B⊆A p(A). Bel is super-additive, with the modular

property

∀A, B ⊆ Ω, Bel(A ∪ B) ≥ Bel(A) + Bel(B) − Bel(A ∩ B). (4)

Expressed back in the lattice P , Eq. (4) becomes

∀a, b ∈ P, β(a ∨ b) + β(a ∧ b) ≥ β(a) + β(b), (5)

recalling that the single point a ∨ b ∈ P now always exists. There are some
important special cases, for example:

– If B(O) is the antichain of the atoms of P , then Eq. (5)

∀a, b ∈ P, β(a ∨ b) + β(a ∧ b) = β(a) + β(b),

so that Bel becomes a classical probability measure Pr with p its discrete
distribution, and

∀A, B ⊆ Ω, Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B).

– If B(O) is a maximal chain C ⊆ P with |C| = H(P), then

∀a, b ∈ P, β(a ∧ b) = min(β(a), β(b))

so that Bel becomes a so-called “necessity measure” η with

∀A, B ⊆ Ω, η(A ∩ B) = min(η(A), η(B)).

Open questions remain about these properties when P is a general lattice, a
complemented lattice, or a general poset (all finite). However, it’s interesting to
consider a potential form of Eq. (5) when P is a general poset:

∀a, b ∈ P,
∑

c∈a∨b

β(c) +
∑

c∈a∧b

β(c) ≥ β(a) + β(b),

and consider connections to general families of semimodular maps on posets [14].

6 Resnik’s Semantic Similarity

A currently attractive way to approach semantic distance in semantic hierarchies
is to use Resnik’s measure of “semantic similarity” [15], originally developed for
application to Wordnet, but then applied successfully by Lord et al. to the GO
[13]. Not only do these concepts have a natural interpretation in our language,
they also serve as a point of departure for our development.
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Definition 2 (Resnik Semantic Similarity). Given a weighted poset O, then
∀a, b ∈ P , define

δResnik(a, b) = max
c∈a∨b

[− log2(β(c))] . (6)

Some issues are immediately evident when comparing the Resnik measure to
our pseudo-distances δ. First, unlike δResnik, our measure δ is definitely not a
distance, most significantly because it is not defined for pairs of general nodes
a, b ∈ P , but rather only for comparable nodes a ≤ b ∈ P .

There is also some ambiguity as to the semantics of δResnik as a measure of
information content, since as discussed in Sec. 5, while the p’s are definitely
values of a discrete distribution on P , β is almost never actually a probability
measure on P .

Also, if a portion of P , and in particular the ideal ↓ b of a node b ∈ P , is a lattice,
then the similarities between all the children of b are identical, no matter their
β values.

Theorem 1. Let b ∈ P with ↓ b ⊆ P a lattice. Then ∀a1, a2, a3, a4 ∈ ↓̇ b,
δResnik(a1, a2) = δResnik(a3, a4).

Proof. Since ↓ b is a lattice, therefore ∀a, a′ ∈ ↓̇ b, a ∨ a′ exists uniquely, and in
particular a ∨ a′ = {b}. Thus ∀a1, a2, a3, a4 ∈ ↓̇ b, δResnik(a1, a2) = − log(β(b)) =
δResnik(a3, a4). ��

But most significantly, δResnik cannot distinguish among links in a chain.

Theorem 2. If a ≤ b ≤ c, then δResnik(a, c) = δResnik(b, c) = δResnik(c, c).

Proof. Since a ≤ b → a∨b = {b} uniquely in P , then δResnik(a, c) = δResnik(b, c) =
δResnik(c, c) = − log(β(c)). ��

This is precisely contrasted with our pseudo-distances δ and δ̄, which satisfy

a ≤ b ≤ c → δ(b, c) ≤ δ(a, c), δ̄(b, c) ≤ δ̄(a, c).

7 Link Weights in Weighted Posets

Despite the weaknesses of δResnik, it is valuable in pointing the way towards
information theoretical distance measures in probability weighted posets, and
in being defined on all a, b ∈ P . While we are also actively researching such
measures for multiple purposes [6], categorization in general and POSOC in
particular depends only on proper measures among comparable nodes a ≤ b ∈ P .

We are therefore looking for a different mechanism to introduce link weights into
our categorization algorithm. Our aim is to “lengthen” chains in the weighted
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poset proportional to the amount of probability concentrated along them, while
leaving them at “original length” where there is none. To do so, we also take an
information theoretical approach, although somewhat distinct from Resnik’s.

Definition 3 (Information Gain). For all pairs of comparable nodes a ≤ b ∈
P , let

ι(a, b) := β(b) − β(a) (7)

be the amount of information gained when moving from b down to a. For each
edge γ(a, b), let ι(γ) := ι(a, b) be the edge weight.

As an example, in Fig. 4 we have

ι(D, K) = β(K) − β(D) = 0.5 − 0.2 = 0.3.

Also in Fig. 4, we have labeled each of the arcs γ with the information gain ι(γ).

It is obvious that ι(a, b) ∈ [0, 1]. It is also comforting that for all pairs of com-
parable nodes a ≤ b ∈ P , no matter which chain is traversed from b down to a,
the sum of the edge weights is always equal to the information gain from b to a.

Proposition 2.

∀a ≤ b ∈ P, ∀Cj ∈ C(a, b),
∑

γi∈Cj

ι(γi) = ι(a, b).

Proof. Fix a ≤ b ∈ P , and a chain Cj ∈ C(a, b) of length hj , and use the notation
from Eq. (1) and Eq. (2). Then we have

∑

γi∈Cj

ι(γi) = (β(c2) − β(a)) + (β(c3) − β(c2)) + . . . +

(β(chj−1) − β(chj−2)) + (β(b) − β(chj−1))
= β(b) − β(a) = ι(a, b).

��

This development follows Monjardet almost precisely [14], with β an isotone map
on P , ι(γ) an edge weight, and ι(a, b) a path weight.

Continuing our example, for D ≤ 1, where we still have the M = 5 chains, we
also have

ι(D, 1) = .8
= ι(〈D, E〉) + ι(〈E, I〉) + ι(〈I, B〉) + ι(〈B, 1〉) = 0.0 + 0.5 + 0.0 + 0.3
= ι(〈D, J〉) + ι(〈J, K〉) + ι(〈K, 1〉) = 0.2 + 0.1 + 0.5

and similarly for the other chains. This is very convenient, because then we
can deal with the information gain between comparable nodes and edge weights
indiscriminately: information gain can always be calculated by edge weights, but
we can also work with information gains whenever we want.
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8 Weighted Normalized Pseudo-distances

For comparable nodes a ≤ b ∈ P , we now want to take the chain lengths hj (or
the normalized chain lengths h̄j) and adjust them by the information gain ι(a, b).
Thus for a particular chain Cj ∈ C(a, b) of length hj

(
h̄j

)
, we wish to construct

a weighted chain length vj(a, b) (or a normalized weighted chain length v̄j(a, b))
as a function of hj

(
h̄j

)
and ι(a, b), which will be equal to hj

(
h̄j

)
scaled up

with ι(a, b). In this paper, we have only developed the normalized case for v̄j .

Considering a generic pair of comparable nodes a ≤ b ∈ P with information gain
ι = ι(a, b) = β(b)−β(a), and a particular chain Cj ∈ C(a, b) with length h̄ = h̄j ,
then how should the weighted, normalized chain length v̄ be determined? Our
motivations are as follows.

First, h and ι are in some sense independent quantities. As illustrated in cartoon
form in Fig. 2, the size of ι indicates the amount of “stretch” in the chain C, no
matter the number of “hops” along its length. So, “grey wolf” is farther from
“animal” than “ungulate” is, despite the fact that they’re both chains of length
two. Similarly, “finch” and “mouse” are stretched to be a similar distance from
“animal”, despite the differences in those chain lengths. So despite the fact that
by Thm. 1, as any particular chain Cj grows, ι increases with the chain length
h̄j , nonetheless in any particular case h̄j could be small while ι is large, or vice
versa.

We thus wish to identify a function f : [0, 1]2 → [0, 1] such that v̄j :=f
(
h̄j, ι(a, b)

)
,

and list the properties desirable for f(h, ι) with h, ι ∈ [0, 1]:

1. In one limit, ι could be zero, indicating that no probability mass was en-
countered when traversing from b down to a. In this case, we wish v̄ to be
recovered simply as h̄, requiring that f(h, 0) = h.

2. Otherwise, we want ι to add in to increase the total length, requiring v̄ ≥ h̄,
or in other words f(h, ι) ≥ h.

3. Then, considering some limit cases, if the entire structure is traversed by a
maximal chain, then v̄ should be maximum, so that f(1, ι) = 1.

4. Similary, in the degenerate case of a = b so that there are no chains and no
ι gain, then v̄ should be minimal, so that f(0, 0) = 0.

5. Finally, if ι = 1 so that all the probability mass is encountered when travers-
ing from b down to a, then v̄ is maximal, no matter than length h: f(h, 1) = 1.

Thus we arrive at the following.

Definition 4 (Weighted Normalized Chain Lengths). For a ≤ b ∈ P , and
for each chain Cj ∈ C(a, b), 1 ≤ j ≤ M , define v̄j := f

(
h̄j, ι(a, b)

)
, where

f(h, ι) := h1−ι, h, ι ∈ [0, 1], (8)

as the weighted chain length. Construct v̄(a, b) := 〈v̄1, v̄2, . . . , v̄j , . . . , v̄M 〉 as
the vector of weighted chain lengths, with v̄j ∈ v̄(a, b), and let

v̄∗(a, b) = min
v̄j∈v̄(a,b)

v̄j , v̄∗(a, b) = max
v̄j∈v̄(a,b)

v̄j .
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Fig. 5. v̄j as a function of h̄j and ι(a, b).

Theorem 3. v̄j as defined using f in Eq. (8) satisfies the conditions 1–5 above.

Proof. Condition 2 follows from the fact that both h, 1 − ι ∈ [0, 1], so that
f(h, ι) = h1−ι ≥ h. All the other conditions follow directly from the form of f .

Fig. 5 shows f as a surface in [0, 1]2, and Fig. 6 shows level curves of f for various
values of h (left) and ι (right). Inspection of the figures reveals some interesting
behaviors. For example, a large ι will bring up even a small h to a high value
of f ; for high h, f degrades gradually to be bounded below by h as ι drops,
whereas for low h, this dropoff is more sudden.

We are now ready to introduce a modification to the prior pseudo-distances.

Fig. 6. (Left) Level curves of f(h, ι) for h = 1(f ≡ 1), .75, .5, .25, .0001; (Right)
Level curves for ι = 1(f ≡ 1), .9, .5, .1, 0.

Definition 5 (Weighted Normalized Pseudo-Distance). Given a weighted
poset O, then for all a ≤ b ∈ P , let a weighted normalized pseudo-distance
δ̄w(a, b) be any function such that v̄∗(a, b) ≤ δ̄w(a, b) ≤ v̄∗(a, b). In particular,
define the following weighted normalized pseudo-distances:
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– Minimum Normalized Weighted Chain Length: δ̄w
m(a, b) := v̄∗(a, b).

– Maximum Normalized Weighted Chain Length: δ̄w
x (a, b) := v̄∗(a, b).

– Average of Extreme Normalized Weighted Chain Lengths:

δ̄w
ax(a, b) :=

v̄∗(a, b) + v̄∗(a, b)
2

.

– Average of All Normalized Weighted Chain Lengths:

δ̄w
ap(a, b) :=

∑
v̄j∈v̄(a,b) v̄j

M
.

Given a weighted pseudo-distance, then the POSOC methodology [7] is simply
modified to substitute δ̄w for δ̄. The results of our example are shown in Tab. 1.

j hj h̄j v̄j

1 3.000 0.600 0.903
2 3.000 0.600 0.903
3 3.000 0.600 0.903
4 4.000 0.800 0.956
5 4.000 0.800 0.956

δ∗ δ̄∗ δ̄w
∗

m 3.000 0.600 0.903
x 4.000 0.800 0.956
ax 3.500 0.700 0.930
ap 3.400 0.680 0.924

Table 1. Results for D ≤ 1. (Top) Chain lengths hj , normalized chain lengths
h̄j , and weighted normalized chain lengths h̄j for chains Cj ∈ C(D, 1), 1 ≤ j ≤
M = 5; (Bottom) Pseudo-distances δ∗, normalized pseudo-distances δ̄∗, and
weighted normalized pseudo-distances δ̄w∗ for ∗ ∈ {x, m, ax, ap}.

9 Conclusion and Discussion

We have demonstrated a method by which probabilities can be used to weighte
pseudo-distances in ordered data objects. Space allows only an explication of
this basic step, and not its application within the overall POSOC ontology cat-
egorization algorithm. While straightforward, this requires the determination of
a real probability distribution p on the GO, perhaps in a manner similar to Lord
et al [13]. The details and results of this application, along with development
for non-normalized weighted chain lengths vj and pseudo-distances δw, await
further work.
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We should also mention an additional step we wish to take in the future. As
we’ve seen, v̄ is not especially sensitive to even moderate information gains ι
even when the chain lengths h̄j are reasonable. But moreover, the example in
Fig. 4 is perhaps somewhat unfortunately chosen, in that the probability mass
is concentrated on the right-hand side of the structure. The pair D ≤ 1 we
considered has a relatively large gain ι(D, 1) = 0.8. In practice, in a real ontology,
mass can be expected to be widely distributed over a very wide and shallow
structure (the width of the GO in some places exceeds 6000, while the height is
only 16), meaning that it can be expected that for any typical pair of nodes a ≤
b, ι(a, b) would actually be expected to be very low, and thus v̄ quite close to h̄.
Thus we are also considering the viability of a non-linear function for information
gain instead of Eq. (7) to heighten or tune the affect of small information gains.
In particular, we are considering various logarithmic forms similar in spirit to
Resnik’s Eq. (6).
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