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Abstract. The capability of OLAP database software systems to han-
dle data complexity comes at a high price for analysts, presenting them a
combinatorially vast space of views of a relational database. We respond
to the need to deploy technologies sufficient to allow users to guide them-
selves to areas of local structure by casting the space of “views” of an
OLAP database as a combinatorial object of all projections and sub-
sets, and “view discovery” as an search process over that lattice. We
equip the view lattice with statistical information theoretical measures
sufficient to support a combinatorial optimization process. We outline
“hop-chaining” as a particular view discovery algorithm over this ob-
ject, wherein users are guided across a permutation of the dimensions
by searching for successive two-dimensional views, pushing seen dimen-
sions into an increasingly large background filter in a “spiraling” search
process. We illustrate this work in the context of data cubes recording
summary statistics for radiation portal monitors at US ports.

1 Introduction and Related Work

OnLine Analytical Processing (OLAP) [6,7] is a relational database technology
providing users with rapid access to summary, aggregated views of a single large
database, and is widely recognized for knowledge representation and discovery in
high-dimensional relational databases. OLAP technologies provide intuitive and
graphical access to the massively complex set of possible summary views avail-
able in large relational (SQL) structured data repositories [21]. But the ability of
OLAP database software systems, such as the industry-leading Hyperion1 and
ProClarity2 platforms, to handle data complexity comes at a high price for an-
alysts. The available portions and projections of the overall data space present
a bewilderingly wide-ranging, combinatorially vast, space of options. There is
an urgent need for knowledge discovery techniques that guide users’ knowledge

1 http://www.oracle.com/technology/products/bi/essbase/visual-explorer.

html
2 http://www.microsoft.com/bi/products/ProClarity/proclarity-overview.

aspx
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discovery tasks; to find relevant patterns, trends, and anomalies; and to do so
within the intuitive interfaces provided by “business intelligence” OLAP tools.

For example, consider a decision-maker responsible for analyzing a large re-
lational database of records of events of personal vehicles, cargo vehicles, and
others passing through radiation portal monitors (RPMs) at US ports of entry.
In our data cubes include dimensions for multiple time representations, spatial
hierarchies of collections of RPMs at different locations, and RPM attributes
such as vendor. In this context, a vast collection of different views, focusing on
different combinations of dimensions, and different subsets of records, are avail-
able to the user. How can the user assess the relative significance of different
views? Given, for example, an initial view focusing on RPM type and date, is
it more significant to focus on passenger or cargo RPMs, or a particular month
in the year? And given such a selection, is it more significant to next consider
a spatial dimension, or any of more than a dozen independent dimensions avail-
able?

Through the Generalized Data-Driven Analysis and Integration (GDDAI)
Project [11], our team has been developing both pure and hybrid OLAP data
analysis capabilities for a range of homeland security applications. The over-
all GDDAI goal is to provide a seamless integration of analysis capabilities,
allowing analysts to focus on understanding the data instead of the tools. We
describe GDDAI’s approach to knowledge discovery in OLAP data cubes us-
ing information-theoretical combinatorial optimization, and as applied in the
ProClarity platform on databases of surveillance data from radiation monitors
at US ports of entry. We aim at a formalism for user-assisted knowledge dis-
covery in OLAP databases around the fundamental concept of view chaining.
Users are provided with analytical feedback to guide themselves to areas of high
local structure within view space: that is, to significant collections of dimen-
sions and data items (columns and rows, respectively), in an OLAP-structured
database.

OLAP is fundamentally concerned with a collection of N variables X i and a
multi-dimensional data relation over their Cartesian product X := ×N

i=1
X i.

Thus formalisms for OLAP data analysis are naturally rooted in relational
database theory, and OLAP formalisms [1,10,28] extend relational calculi and
algebras, for example extending the SQL language to its multi-dimensional ana-
log MDX3. But OLAP shares mathematical connections with a range of multi-
variate analytical approaches operable on the space X, for example statisti-
cal databases [26]; the analysis of contingency tables [3]; hierarchical log-linear
modeling [18]; grand tour methods in multi-variate data visualization [2]; pro-
jection pursuit [19]; data tensor analysis [14]; and reconstructibility analysis
[13,20].

Our ultimate goal is to place OLAP knowledge discovery methods within a
mathematical context of combinatorial optimization in such a manner as to be
realizable within existing industry-standard database patforms. Specifically:

3 http://msdn.microsoft.com/en-us/library/ms145506.aspx
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– Given a foundational OLAP database engine platform (e.g. EssBase4, SSAS5);
– And an OLAP client with technology for graphical display and an intuitive

interface (e.g. ProClarity, Hyperion);
– Cast the space of views (sub-cubes) of an OLAP database as a combinato-

rial, lattice-theoretical [9] structure;
– Equipped with statistical measures reflecting the structural relations among

views (their dimensional scope, depth, etc.) in the context of the data ob-
served within them;

– To support both automated search to areas of high local structure;
– And user-guided exploration of views in the context of these measures.

While we believe that our emphasis on a combinatorial approach is distinct,
our work resonates with that of a number of others. Our “view chaining” (moving
from one projected subset of a data cube to another intersecting in dimension-
ality) is similar to the navigational processes described by others [23,24,25], and
anticipated in some of our prior work [12]. But approaches which seek out “drill-
down paths” [5] only “descend” the view lattice along one “axis” of views with
increasing dimensional extension, sequentially adding variables to the view at
each step. In contrast, our “hop-chaining” technique chains through a sequence
of two-dimensional views, affecting a permutation of the variables X i.

Our overall approach is consistent with an increasingly large body of similar
work drawing on information theoretical statistical measures in data cubes to
provide quantities for making navigational choices [20,22]. However, some other
researchers have used different statistical approaches, for example variance esti-
mation [25] or skewness measures [16]. Our primary departure from traditional
OLAP analysis is the extension to conditioning and conditional probability mea-
sures over views. This not only provides the basis for optimization and naviga-
tion, it also creates a strong connection to graphical or structural statistical
models [4,27], graphoid logics [17,27], as well as systems-theory based structural
model induction methodologies [13,15].

We begin by establishing concepts and notation for (non-hierarchical) OLAP
databases over data tensors, and then define the view lattice of projected
subsets over such structures. This brings us to a point where we can expli-
cate the fundamental (again non-hierarchical) OLAP operations of projection,
extension, filtering, and “flushing” (decreasing a filter). We introduce condi-
tional views and the complex combinatorial object which is the conditional
view space. This prepares us to introduce “hop-chaining” as a particular view
discovery algorithm over this combinatorial object, wherein users are guided
by conditional information measures across a permutation of the dimensions
by searching for successive two-dimensional views, pushing seen dimensions in
a “spiraling” search process into an increasingly large background filter. We
then consider how to move to the fully hierarchical case, before illustrating hop-
chaining on databases of surveillance data from radiation monitors at US ports
of entry.
4 http://www.oracle.com/appserver/business-intelligence/essbase.html
5 http://msdn.microsoft.com/en-us/library/ms175609(SQL.90).aspx
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2 OLAP Formalism

Although the mathematical tools required to analyze OLAP databases are rel-
atively simple, their notational formalisms are inevitably, and regretably, not
[1,10,28]. While our formalism is similar, it differs in a number of ways as well:

– We combine projections I on dimensions and restrictions J on records into
a lattice-theoretical object called a view DI,J .

– OLAP concerns databases organized around collections of variables which
can be distinguished as: dimensions, which have a hierarchical structure,
and whose Cartesian product forms the data cube’s schema; and measures,
which can be numerically aggregated within different slices of that schema.
For this work we consider cubes with a single integral measure, which in our
application is the count of a number of records in the underlying database.
While in principle any numerical measure could yield, through appropriate
normalization, frequency distributions for use in our view discovery tech-
nique, these count measures do so directly and naturally. In future work we
will consider the generalization to arbitrary numerical measures.

– Our view discovery method is currently only available on flat dimensions
which are not hierarchically-structured to support roll-up aggregation and
drill-down disaggregation operations. Future directions to extend to fully
hierarchical OLAP data cubes will be indicated in Sec. 5.3.

2.1 Chaining Operations in the View Lattice of Data Tensor Cubes

Let N = {1, 2, . . .}, NN := {1, 2, . . . , N}. For some N ∈ N, define a data cube
as an N -dimensional tensor D := 〈X,X , c〉 where:

– X := {X i}N
i=1 is a collection of N variables or columns with X i :=

{xki}Li

ki=1 ∈ X ;
– X := ×Xi∈X X i is a data space or data schema whose members are

N -dimensional vectors x = 〈xk1 , xk2 , . . . , xkN 〉 = 〈xki 〉Ni=1 ∈ X called slots;
– c : X → {0, 1, . . .} is a count function.

Let M :=
∑

x∈X c(x) be the total number of records in the database. Then
D also has relative frequencies f on the cells, so that f : X → [0, 1], where
f(x) = c(x)

M , and thus
∑

x∈X f(x) = 1. An example of a data tensor with
simulated data for our RPM cube is shown in Table 1, for X = {X1, X2, X3} = {
RPM Manufacturer, Location, Month }, with RPM Mfr = { Ludlum, SAIC },
Location = { New York, Seattle, Miami }, and Month = { Jan, Feb, Mar, Apr
}, so that N = 3. The table shows the counts c(x), so that M = 74, and the
frequencies f(x).

At any time, we may look at a projection of D along a sub-cross-product
involving only certain dimensions with indices I ⊂ NN . Call I a projector, and
denote x ↓ I = 〈xki〉i∈I ∈ X ↓ I where X ↓ I :=×i∈I

X i, as a projected vector
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Table 1. An example data tensor. Blank entries repeat the elements above, and rows
with zero counts are suppressed.

RPM Mfr Location Month c(x) f(x)

Ludlum New York Jan 1 0.014
Mar 3 0.041
Apr 7 0.095

Seattle Jan 9 0.122
Apr 15 0.203

Miami Jan 2 0.027
Feb 8 0.108
Mar 4 0.054
Apr 1 0.014

RPM Mfr Location Month c(x) f(x)

SAIC New York Jan 1 0.014
Seattle Feb 4 0.054

Mar 3 0.041
Apr 3 0.041

Miami Jan 6 0.081
Feb 2 0.027
Mar 4 0.054
Apr 1 0.014

and data schema. We write x ↓ i for x ↓ {i}, and for projectors I ⊆ I ′ and
vectors x, y ∈ X, we use x ↓ I ⊆ y ↓ I ′ to mean ∀i ∈ I, x ↓ i = y ↓ i.

Count and frequency functions convey to the projected count and frequency
functions denoted c[I] : X ↓ I → N and f [I] : X ↓ I → [0, 1], so that

c[I](x ↓ I) =
∑

x′↓NN⊇x↓I

c(x′) (1)

f [I](x ↓ I) =
∑

x′↓NN⊇x↓I

f(x′), (2)

and
∑

x↓I∈X↓I f [I](x ↓ I) = 1. In words, we add the counts (resp. frequencies)
over all vectors in y ∈ X such that y ↓ I = x ↓ I. This is just the process of
building the I-marginal over f , seen as a joint distribution over the X i for i ∈ I.

Any set of record indices J ⊆ NM is called a filter. Then we can consider the
filtered count function cJ : X → {0, 1, . . .} and frequency function fJ : X →
[0, 1] whose values are reduced by the restriction in J ⊆ NM , now determining

M ′ :=
∑

x∈X

cJ (x) = |J | ≤ M. (3)

We renormalize the frequencies fJ over the resulting M ′ to derive

fJ(x) =
cJ (x)
M ′ , (4)

so that still
∑

x∈X fJ(x) = 1.
Finally, when both a selector I and filter J are available, then we have cJ [I] :

X ↓ I → {0, 1, . . .}, fJ [I] : x ↓ I → [0, 1] defined analogously, where now∑
x↓I∈X↓I fJ [I](x ↓ I) = 1. So given a data cube D, denote DI,J as a view

of D, restricting our attention to just the J records projected onto just the I
dimensions X ↓ I, and determining counts cJ [I] and frequencies fJ [I].

In a lattice theoretical context [9], each projector I ⊆ NN can be cast as a
point in the Boolean lattice BN of dimension N called a projector lattice.
Similarly, each filter J ⊆ NM is a point in a Boolean lattice BM called a filter
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lattice. Thus each view DI,J maps to a unique node in the view lattice B :=
BN ×BM = 2N × 2M , the Cartesian product of the projector and filter lattices.

We then define chaining operations as transitions from an initial view DI,J

to another DI′,J or DI,J′ , corresponding to a move in the view lattice B:

Projection: Removal of a dimension so that I ′ = I � {i} for some i ∈ I. This
corresponds to moving a single step down in BN , and to marginalization in
statistical analyses. We have ∀x′ ↓ I ′ ∈ X ↓ I ′,

cJ [I ′] (x′ ↓ I ′) =
∑

x↓I⊇x′↓I′
cJ [I](x). (5)

Extension: Addition of a dimension so that I ′ = I ∪ {i} for some i /∈ I. This
corresponds to moving a single step up in BN . We’re now disaggregating or
distributing information about the I dimensions over the I ′ � I dimensions.
Notationally, we have the converse of (5), so that ∀x ↓ I ∈ X ↓ I,

∑

x′↓I′⊇x↓I

cJ [I ′](x′) = cJ [I] (x ↓ I).

Filtering: Removal of records by strengthening the filter, so that J ′ ⊆ J . This
corresponds to moving potentially multiple steps down in BM .

Flushing: Addition of records by weakening (reversing, flushing) the filter, so
that J ′ ⊇ J . Corresponds to moving potentially multiple steps up in BM .

Repeated chaining operations thus map to trajectories in B. Consider the very
small example shown in Fig. 1 for N = M = 2 with dimensions X = {X, Y }
and two N -dimensional data vectors a, b ∈ X × Y , and denote e.g. X/ab =
{a ↓ {X}, b ↓ {X}}. The left side of Fig. 1 shows the separate projector and
selector lattices (bottom nodes ∅ not shown ), with extension as a transition
to a higher rank in the lattice and projection as a downward transition. Simi-
larly, filtering and flushing are the corresponding operations in the filter lattice.
The view lattice is shown on the right, along with a particular chain opera-
tion D{X,Y },{a} �→ D{X},{a}, which projects the subset of records {a} from the
two-dimensional view {X, Y } = X to the one-dimensional view {X} ⊆ X .

XY/ab

XY/a XY/b

Y/ab

Y/a Y/b

X/ab

X/a X/b

X =

Extend

Project

XY

X Y

Dimensions {X ,Y}

Flush

Filter

ab

a b

Vectors a,b in X x Y

Fig. 1. he lattice theoretical view of data views. (Left) The projector and filter lattices
BN ,BM (global lower bounds ∅ not shown). (Right) The view lattice B as their product.
The projection chain operation D{X,Y },{a} �→ D{X},{a} is shown as a bold link.
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2.2 Relational Expressions and Background Filtering

Note that usually M � N , so that there are far more records than dimen-
sions (in our example, M = 74 > 3 = N). In principle, filters J defining which
records to include in a view can be specified arbitrarily, for example through
any SQL or MDX where clause, or through OLAP operations like top n, in-
cluding the n records with the highest value of some feature. In practice, filters
are specified as relational expressions in terms of the dimensional values, as ex-
pressed in MDX where clauses. In our example, we might say where RPM Mfr
= "Ludlum" and ( Month <= "Feb" and Month >= "Jan"), using chronolog-
ical order on the Month variable to determine a filter J specifying just those
20 out of the total possible 74 records. For notational purposes, we will there-
fore sometimes use these relational expressions to indicate the corresponding
filters.

Note that each relational filter expression references a certain set of variables,
in this case RPM Mfr and Month, denoted as R ⊆ NN . Compared to our pro-
jector I, R naturally divides into two groups of variables:

Foreground: Those variables in Rf := R ∩ I which appear in both the filter
expression and are included in the current projection.

Background: Those variables in Rb := R � I which appear only in the filter
expression, but are not part of the current projection.

The portions of filter expressions involving foreground variables restrict the
rows and columns displayed in the OLAP tool. Filtering expressions can have
many sources, such as Show Only or Hide. It is common in full (hierarchi-
cal) OLAP to select a collection of siblings within a particular sub-branch of
a hierarchical dimension. For example for a spatial dimension, the user within
the ProClarity tool might select All -> USA -> California, or its children
California -> Cities, all siblings. But those portions of filter expressions in-
volving background variables do not change which rows or columns are displayed,
but only serve to reduce the values shown in cells. In ProClarity, these are shown
in the Background pane.

2.3 Example

Table 2 shows the results of four chaining operations from our original example
in Table 1, including a projection I = {1, 2, 3} �→ I ′ = {1, 2}, a filter using
relational expressions, and a filter using a non-relational expression. The bot-
tom right shows a hybrid result of applying both the projector I ′ = {1, 2}
and the relational filter expression where RPM Mfr = "Ludlum" and ( Month
<= "Feb" and Month >= "Jan") . Compare this to the top left, where there is
only a quantitative restriction for the same dimensionality because of the use of
a background filter. Here I = { RPM Mfr, Location }, R = { RPM Mfr, Month
}, Rf = { RPM Mfr }, Rb = { Month }, M ′ = 20.
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Table 2. Results from chaining operations DNN ,NM �→ DI′,J′ from the data cube in
Table 1. (Top Left) Projection: I ′ = {1, 2}, M ′ = M = 74. (Top Right) Filter: J ′ =
where RPM Mfr = "Ludlum" and ( Month <= "Feb" and Month >= "Jan"), M ′ =
20. (Bottom Left) Filter: J ′ determined from top 5 most frequent entries, M ′ = 45.
(Bottom Right) I ′ = {1, 2} and J ′ determinued by the relational expression where RPM

Mfr = "Ludlum" and ( Month <= "Feb" and Month >= "Jan"), M ′ = 20.

RPM Mfr Location c[I ′](x) f [I ′](x)

Ludlum New York 11 0.150
Seattle 24 0.325
Miami 15 0.203

SAIC New York 1 0.014
Seattle 10 0.136
Miami 13 0.176

RPM Mfr Location Month cJ′
(x) fJ′

(x)

Ludlum New York Jan 1 0.050
Seattle Jan 9 0.450
Miami Jan 2 0.100

Feb 8 0.400

RPM Mfr Location Month cJ′
(x) fJ′

(x)

Ludlum Seattle Apr 15 0.333
Jan 9 0.200

Miami Feb 8 0.178
New York Apr 7 0.156

SAIC New York Jan 6 0.133

RPM Mfr Location cJ′
[I ′](x) fJ′

[I ′](x)

Ludlum New York 1 0.050
Seattle 9 0.450
Miami 10 0.500

3 Conditional Views

In this section consider the filter J to be fixed, and supress the superscript on
f . We have seen that the frequencies f : X → [0, 1] represent joint probabilities
f(x) = f(xk1 , xk2 , . . . , xkN ), so that from (2) and (5), f [I](x ↓ I) expresses
the I-way marginal over a joint probability distribution f . Now consider two
projectors I1, I2 ⊆ NN , so that we can define a conditional frequency f [I1|I2] :
X ↓ I1 ∪ I2 → [0, 1] where f [I1|I2] := f [I1∪I2]

f [I2]
. For individual vectors, we have

f [I1|I2](x) = f [I1|I2](x ↓ I1 ∪ I2) :=
f [I1 ∪ I2](x ↓ I1 ∪ I2)

f [I2](x ↓ I2)
.

f [I1|I2](x) is the probability of the vector x ↓ I1 ∪ I2 restricted to the I1 ∪ I2

dimensions given that we know we can only choose vectors whose restriction
to I2 is x ↓ I2. We note that f [I1|∅](x) = f [I1](x), f [∅|I2] ≡ 1, and since
f [I1|I2] = f [I1

� I2|I2], in general we can assume that I1 and I2 are disjoint.
We can now extend our concept of a view to a conditional view DI1|I2,J

as a view on DI1∪I2,J , which is further equipped with the conditional frequency
fJ [I1|I2]. Conditional views DI1|I2,J live in a different combinatorial structure
than the view lattice B. To describe I1|I2 and J in a conditional view, we need
three sets I1, I2 ∈ NN and J ∈ NM with I1 and I2 disjoint. So define A :=
3[N ] × 2M where 3[N ] is a graded poset [9] with the following structure:

– N + 1 levels numbered from the bottom 0, 1, . . .N .
– The ith level contains all partitions of each of the sets in

(
[N ]
i

)
, that is the

i-element subsets of NN , into two parts where
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1. The order of the parts is significant, so that [{1, 3}, {4}] and [{4}, {1, 3}]
of {1, 3, 4} are not equivalent.

2. The empty set is an allowed member of a partition, so [{1, 3, 4}, ∅] is in
the third level of 3[N ] for N ≥ 4.

– We write the two sets without set brackets and with a | separating them.
– The partial order is given by an extended subset relation: if I1 ⊆ I ′1 and

I2 ⊆ I ′2, then I1|I2 ≺ I ′1|I ′2, e.g. 1 2|3 ≺ 1 2 4|3.

An element in the poset 3[N ] corresponds to an I1|I2 by letting I1 (resp. I2)
be the elements to the left (resp. right) of the |. We call this poset 3[N ] because
it’s size is 3N and it really corresponds to partitioning NN into three disjoint
sets, the first being I1, the second being I2 and the third being NN

� (I1 ∪ I2).
The structure 3[2] is shown in Fig. 2.

1|2 2|1 1 2|∅∅|1 2

1|∅∅|1 2|∅∅|2

∅|∅

�������

�������

�����

�����

������

������
������

������
������

������

Fig. 2. The structure 3[2]

4 Information Measures on Conditional Views

For a view DI,J ∈ B which we identify with its frequency fJ [I], or a conditional
view DI1|I2;J ∈ A which we identify with its conditional frequency fJ [I1|I2], we
are interested in measuring how “interesting” or “unusual” it is, as measured
by departures from a null model. Such measures can be used for combinatorial
search over the view structures B,A to identify noteworthy features in the data.
The entropy of an unconditional view DI,J

H(fJ [I]) := −
∑

x∈X↓I

fJ [I](x) log(fJ [I](x)).

is a well-established measure of the information content of that view. A view has
maximal entropy when every slot has the same expected count. Given a condi-
tional view DI1|I2,J , we define the conditional entropy, H(fJ [I1|I2]) to be the
expected entropy of the conditional distribution fJ [I1|I2], which operationally
is related to the unconditional entropy as

H(fJ [I1|I2]) := H(fJ [I1 ∪ I2]) − H(fJ [I2]).

Given two views DI,J ,DI,J′ of the same dimensionality I, but with different
filters J and J ′, the relative entropy (Kullback-Leibler divergence)
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D(fJ [I]‖fJ′
[I]) :=

∑

x∈X↓I

fJ [I](x) log
(

fJ [I](x)
fJ′ [I](x)

)

is a well-known measure of the similarity of fJ [I] to fJ′
[I]. D is zero if and

only if fJ [I] = fJ′
[I], but it is not a metric because it is not symmetric, i.e.,

D(fJ [I]‖fJ′
[I]) �= D(fJ′

[I]‖fJ [I]).
D is a special case of a larger class of α-divergence measures between dis-

tribution introduced by Csiszár [8]. Given two probability distributions P and
Q, write the density with respect to the dominating measure μ = P = Q as
p = dP/d(P + Q) and q = dQ/d(P + Q). For any α ∈ R, the α-divergence is

Dα(P ||Q) =
∫

αp(x) + (1 − α)q(x) − p(x)αq(x)1−α

α(1 − α)
μ(dx).

α-divergence is convex with respect to both p and q, is non-negative, and is
zero if and only p = q μ-almost everywhere. For α �= 0, 1, the α-divergence is
bounded. The limit when α → 1 returns the relative entropy between P and Q.
There are other special cases that are of interest to us:

D2(P ||Q) =
1
2

∫
(p(x) − q(x))2

q(x)
μ(dx)

D−1(P ||Q) =
1
2

∫
(q(x) − p(x))2

p(x)
μ(dx)

D1/2(P ||Q) = 2
∫ (√

p(x) −
√

q(x)
)2

μ(dx).

In particular the Hellinger metric
√

D1/2 is symmetric in both p and q, and
satisfies the triangle inequality. We prefer the Hellinger distance over the relative
entropy because it is a bonified metric and remains bounded. In our case and
notation, we have the Hellinger distance as

G(fJ [I], fJ′
[I]) :=

√
√
√
√

∑

x∈X↓I

(√
fJ [I](x) −

√
fJ′ [I](x)

)2

.

5 Hop-Chaining View Discovery

Given our basic formalism on data views, conditional views, and information
measures on them, a variety of possible user-guided navigational tasks become
possible. For example, above we discussed Cariou et al. [5], who develop meth-
ods for discovering “drill-down paths” in data cubes. We can describe this as
creating a series of views with projectors I1 ⊇ I2 ⊇ I3 of increasingly specified
dimensional structure.

Our approach is motivated by the idea that most users will be challenged
by complex views of high dimensionality, while still needing to explore many
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possible data interactions. We are thus interested in restricting our users to
two-dimensional views only, producing a sequence of projectors I1, I2, I3 where
|Ik| = 2 and |Ik ∩ Ik+1| = 1, thus affecting a permutation of the
variables X i.

5.1 Preliminaries

We assume an arbitrary permutation of the i ∈ NN so that we can refer to the
dimensions X1, X2, . . . , XN in order. The choice of the initial variables X1, X2

is a free parameter to the method, acting as a kind of “seed”.
One thing that is critical to note is the following. Consider a view DI,J which

is then filtered to include only records for a particular member xi0
0 ∈ X i0 of a

particular dimension X i0 ∈ X ; in other words, let J ′ be determined by the rela-
tional expression where Xi0 = xi00 . Then in the new view D′

I,J′ , fJ′
[I] is positive

only on the fibers of the tensor X where X i0 = xi0
0 , and zero elsewhere. Thus

the variable X i0 is effectively removed from the dimensionality of D′, or rather,
it is removed from the support of D′.

Notationally, we can say D
I,Xi0=x

i0
0

= D
I�{i0},Xi0=x

i0
0

. Under the normal
convention that 0 · log(0) = 0, our information measures H and G above are
insensitive to the addition of zeros in the distribution. This allows us to compare
the view D

I,Xi0=x
i0
0

to any other view of dimensionality I � {i0}.
This is illustrated in Table 3 through our continuing example, now with the

filter where Location="Seattle". Although formally still an RPM Mfr × Lo-
cation × Month cube, in fact this view lives in the RPM Mfr × Month plane,
and so can be compared to the RPM Mfr × Month marginal.

Table 3. Our example data tensor from Table 1 under the filter where

Location="Seattle"; M ′ = 34

RPM Mfr Location Month c(x) f(x)

Ludlum Seattle Jan 9 0.265
Apr 15 0.441

SAIC Feb 4 0.118
Mar 3 0.088
Apr 3 0.088

Finally, some caution is necessary when the relative entropy D(fJ [I]‖fJ′
[I])

or Hellinger distance G(fJ [I], fJ′
[I]) is calculated from data, as their magni-

tudes between empirical distributions is strongly influenced by small sample
sizes. To counter spurious effects, we supplement each calculated entropy with
the probability that under the null distribution that the row has the same dis-
tribution as the marginal, of observing an empirical entropy larger or equal to
actual value. When that probability is large, say greater than 5%, then we con-
sider consider its value spurious and set it to zero before proceeding with the
algorithm.
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5.2 Method

We can now state the hop-chaining methodology.

1. Set the initial filter to J = NM . Set the initial projector I = {1, 2}, deter-
mining the initial view fJ [I] as just the initial X1 × X2 grid.

2. For each row xk1 ∈ X1, we have the marginal distribution fX1=xk1 [I] of that
individual row, using the superscript to indicate the relational expression
filter. We also have the marginal fJ [I � {X1}] over all the rows for the
current filter J . In light of the discussion just above, we can calculate all the
Hellinger distances between each of the rows and this row marginal as

G(fX1=xk1 [I], fJ [I � {X1}]) = G(fX1=xk1 [I � {X1}], fJ [I � {X1}]),

and retain the maximum row value G1 := maxxk1∈X1 G(fX1=xk1 [I], fJ [I �

{X1}]). We can dually do so for columns against the column marginal:

G(fX2=xk2 [I], fJ [I � {X2}]) = G(fX2=xk2 [I � {X2}], fJ [I � {X2}]),

retaining the maximum value G2:=maxxk2∈X2 G(fX2=xk2 [I], fJ [I � {X2}]).
3. The user is prompted to select either a row x1

0 ∈ X1 or a column x2
0 ∈ X2.

Since G1 (resp. G2) represents the row (column) with the largest distance
from its marginal, perhaps selecting the global maximum max(G1, G2) is
most appropriate; or this can be selected automatically. Letting x′

0 be the
selected value from the selected variable (row or column) i′ ∈ I, then J ′ is
set to where Xi

′
= x′0, and this is placed in the background filter.

4. Let i′′ ∈ I be the variable not selected by the user, so that I = {i′, i′′}.
5. For each dimension i′′′ ∈ NN

� I, that is, for each dimension which is
neither in the background filter Rb = {i′} nor retained in the view through
the projector {i′′}, calculate the conditional entropy of the retained view
fJ′

[{i′′}] against that variable: H(fJ′
[{i′′}|{i′′′}]).

6. The user is prompted to select a new variable i′′′ ∈ NN
� I to add to the

projector {i′′}. Since argmin
i′′′∈NN

�I

H(fJ′
[{i′′}|{i′′′}]) represents the variable with

the most constraint against i′′, that may be the most appropriate selection,
or it can be selected automatically.

7. Let I ′ = {i′′, i′′′}. Note that I ′ is a sibling to I in BN , thus the name “hop-
chaining”.

8. Let I ′, J ′ be the new I, J and go to step 2.

Keeping in mind the arbitrary permutation of the X i, then the repeated result
of applying this method is a sequence of hop-chaining steps in the view lattice,
building up an increasing background filter:

1. I = {1, 2}, J = NM

2. I ′ = {2, 3}, J ′ = where X1 = x10
3. I ′′ = {3, 4}, J ′′ = where X1 = x10, X

2 = x20
4. I ′′′ = {4, 5}, J ′′′ = where X1 = x10, X

2 = x20, X
3 = x30
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5.3 Extension to Hierarchical Data Cubes

In Sec. 2.1 we introduced data cubes as flat data tensors, while in general in
OLAP the dimensions are hierarchically structured. While a full development
of a hierarchical approach to hop-chaining awaits future work, we can indi-
cate those directions here. First, we extend our definition of a data cube to
be D := 〈X,X ,Q, c〉, where now Q = {P i}N

i=1 is a collection of N partially-
ordered hierarchical [9] dimensions P i =

〈
P i,≤i

〉
with members pi ∈ P i.

Each partially-ordered set (poset) P i is isomorphic to a sub-poset of the Boolean
lattice Bi =

〈
2Xi

,⊆
〉

which is the power set of the values of the variable X i

ordered by set inclusion. While in principle each poset P i could be as large as
Bi, in practice, they are trees, with X i ∈ P i and ∀xi ∈ X i, {xi} ∈ P i.

We can identify the cube schema as P :=×N

i=1
P i, so that each p ∈ P is

a cell. We then have the hierarchical count function ĉ : P → N, where ĉ(p) :=
∑

x≤p c(x), and ≤:=×N

i=1
≤i, the product order of the hierarchies. There is

also the hierarchical frequency function f̂ : P → [0, 1], with f̂(p) := ĉ(p)
M . In a

real OLAP view, the entries actually correspond not to slots x ∈ X, but to cells
p ∈ P; and the rows and columns not to collections of data items Y i ⊆ X i, but
of members Qi ⊆ P i. If X1 = “Location”, and p1

0 = “California” ∈ P 1, then
classical drilldown might take a row like California from a view, restrict J with
the relational expression where Location = California, and then replace Q1

with all the children of p1
0, so that Q′1 = {p1 ≤1 p1

0}.
We are experimenting with view discovery and hop-chaining formalisms which

operate over these member collections Qi, and in general over their Cartesian
products×i∈I

Qi ⊆ P ↓ I. But in the current formulation, it is sufficient to
consider each dimension X i involved in a foreground view to be drilled-down to
the immediate children of the top of P i, that is, the children of All.

6 Implementation

We have implemented the hop-chaining methodology in a prototype form for ex-
perimentation and proof-of-principle. ProClarity 6.2 is used in conjunction with
SQL Server Analysis Services (SSAS) 2005 and the R statistical platform v. 2.76.
ProClarity provides a flexible and friendly GUI environment with extensive API
support which we use to gather current display contents and query context for
row, column and background filter selections. R is currently used in either batch
or interactive mode for statistical analysis and development. Microsoft Visual
Studio .Net 2005 is used to develop plug-ins to ProClarity to pass ProClarity
views to R for hop-chain calculations.

A first view of the data set used for demonstrating this method is shown
in Fig. 3, a screenshot from the ProClarity tool. The database is a collection of
1.9M records of events of RPM events. The 15 available dimensions are shown on
the left of the screen (e.g. “day of the month”, “RPM hierarchy”), tracking such
6 http://www.r-project.org
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Fig. 3. Initial 2-D view of the alarm summary data cube, showing count distribution
of RPM Role by months

things as the identities and characteristics of particular RPMs, time information
about events, and information about the hardware, firmware, and software used
at different RPMs.

7 Examples

Space limitations will allow showing only a single step for the hop-chaining
procedure against the alarm summary data cube.

Fig. 3 shows the two-dimensional projection of the X1 = “RPM Role” ×X2 =
“Month” dimensions within the 15-dimensional overall cube, drilled down to the
first level of the hierarchies (see Sec. 5.3). Its plot shows the distributions of

Fig. 4. Count distribution of months
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Fig. 5. Frequency distributions of RPM roles

Fig. 6. Frequency distributions of months

count c of alarms by RPM role (Busses Primary, Cargo Secondary, etc.) X1,
while Fig. 4 shows the distribution by Month X2.

The distributions for roles seem to vary at most by overall magnitude, rather
than shape, while the distributions for months appear almost identical. How-
ever, Fig. 5 and Fig. 6 show the same distributions, but now in terms of their
frequencies f relative to their corresponding marginals, allowing us to compare
the shapes of the distributions normalized by their absolute sizes. While the
months still seem identical, the RPM roles are clearly different, although it is
difficult to see which is most unusual with respect to the marginal (bold line).

The left side of Fig. 7 shows the Hellinger distances G(fXi=xki [I], fJ [I �

{X i}]) for i ∈ {1, 2} for each row or column against its marginal. The RPM
roles “ECCF” and “Mail” are clearly the most significant, which can be veri-
fied by examining the anomolously shaped plots in Fig. 5. The most significant
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Fig. 7. (Left) Hellinger distances of rows and columns against their marginals. (Right)
Relative entropy of months against each other significant dimension, given that RPM
Role = ECCF.

Fig. 8. Subsequent view on the X2 = Months ×X3 = Day of Month projector. Note
the new background filter where RPM Role = ECCF.

month is December, although this is hardly evident in Fig. 6. We select the
maximal row-wise Hellinger value G1 = .011 for ECCF, so that i′ = 1, x1

0 =
ECCF. X i′ = X1 = “RPM Role” is added to the backgound filter, X i′′ = X2

= Months is retained in the view, and we calculate H(fJ′
[{2}|{i′′′}]) for all

i′′′ ∈ {3, 4, . . . , 15}, which are shown on the right of Fig. 7 for all significant di-
mensions. On that basis X3 is selected as Day of Month with minimal H = 3.22.

The subsequent view for X2 = Months ×X3 = Day of Month is then shown
in Fig. 8. Note the strikingly divergent plot for April: it in fact does have the
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highest Hellinger distance at .07, an aspect which is completely invisible from
the overall initial view, e.g. in Fig. 5.

8 Discussion, Analysis, and Future Work

In this paper, we have provided the fundemantals necessary to express view
discovery in OLAP databases as a combinatorial search and optimization op-
eration in general, aside from the specific hop-chaining method. What remains
to be addressed is a precise formal expression of this optimization problem.
This is dependent on the mathematical properties of our information measures
H, D, and G over the lattices B,A. It is well known, for example, that H is a
monotonic function in B [9], in that ∀I1 ⊆ I2, H(fJ [I1]) ≥ H(fJ [I2]). There
should be ample literature (e.g. [27]) to fully explicate the behavior of these
functions on these structures, and guide development of future search algo-
rithms.

Also as mentioned above, we are restricting our attention to OLAP cubes
with a single “count” measure. Frequency distributions are available from other
quantitative measures, and exploring the behavior of these algorithms in those
contexts is of interest.

Information measures are used because of their mathematical properties in
identifying unusual distributions. It remains to be demonstrated that these mea-
sures have high utility for real analysts of these databases, and which mix of
statistical measures, whether including our precise hop-chaining algorithm or
not, is ideal for their needs.

The value of our implementation within commercial front-end database tools
provides the opportunity for this validation. Generally, software implementations
provide a tremendous value in performing this research, not only for this practical
validation by sponsors and users, but also for assisting with the methodological
development itself. As our software platform matures, we look forward to incor-
porating other algorithms for view discovery [5,16,20,23,24,25], for purposes of
comparison and completeness.
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