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Critical Infrastructure Protection Decision Support System 
(CIP/DSS):  

Addressing Uncertainty and Risk 
Cliff A Joslyn1, William A Buehring2, Paul G Kaplan3, and Dennis R Powell4 

 
Several sources of uncertainty are present in the CIP/DSS models, for example uncertain input 
parameters that are drivers for estimating consequences in the individual infrastructure models. 
CIP/DSS should be capable of assisting DHS in analyzing risk-informed5 strategies for 
implementing preventive, protective, mitigation, response, and recovery measures. Thus DHS 
expects the level of uncertainty to be explicitly addressed in our CIP/DSS results. Although the 
CIP/DSS project is not charged with estimating the probability of terrorist attack, the CIP/DSS 
analysis must be able to accommodate, without great difficulty, the relevant threat information 
available to DHS. Thus selecting an appropriate method for dealing with uncertainty should 
account not only for suitable theoretical underpinnings but also practical needs, such as 
providing users of CIP/DSS results with a reasonable understanding of the level of uncertainty in 
those results. 
 
This paper overviews some technical issues about, and options for addressing, uncertainty and 
risk in CIP/DSS. Discussions on this topic were held at the June 30 – July 1, 2004, CIP/DSS 
meeting held at Argonne National Laboratory, where consensus was reached that sensitivity and 
uncertainty analysis should be part of the software package of CIP/DSS. The classes of methods 
discussed here were presented at that and other meetings in some depth. To date, the sampling 
approach to sensitivity analysis presented in Sec. 2.1 has been applied using native capabilities 
within the Vensim implementation. The other topics presented here are under active exploration, 
and after further experience with CIP/DSS modeling and use of CIP/DSS results, may be 
recommended for implementation in future versions.  
 
This paper represents a work in progress, and we look forward to updating it as we gain 
experience and try different approaches. In particular, we will aim over the next six months to 
evaluate both the methods described in this paper and other available methods in the context of 
the biological scenarios defined by DHS. 
 
1.  HOW DOES CIP/DSS WORK? 
 
A brief overview of how CIP/DSS works provides a basis for describing some options for 
treatment of uncertainty and risk. The performance of the 14 infrastructures and their primary 
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interdependencies are examined through detailed national and metropolitan models. The models 
provide information with respect to physical and transactional infrastructure activity and several 
other consequence metrics,7 which are provided to the decision analysis module, where 
consequence metrics are combined and converted into decision metrics,8 such as presented in 
Table 1. For a given set of conditions and assumptions (a case), the goal is for the infrastructure 
models to calculate and output an appropriate set of consequence metrics to the decision analysis 
module; that is, the infrastructure models will provide outputs that are either decision metrics 
without conversion or are as close as possible to the desired decision metrics.  
The primary building block of the CIP/DSS is called a case. A case consists of consists of two or 
more scenario pairs; each scenario pair is composed of a Readiness Scenario and an Incident 
Scenario: 
 

• Base Scenario Pair 
o Base Readiness Scenario  
o Base Incident Scenario 

• One or more Alternate Scenario Pair(s) 
o Alternate Readiness Scenario 
o Alternate Incident Scenario 

 
Comparison of alternate scenario pairs with base scenario pairs indicates the effects that various 
investments and strategies, labeled here as optional measures (which include hardware, 
processes and strategies related to prevention, protection, mitigation, response, and recovery), 
could have if they were implemented by DHS or other organizations. Each scenario requires a 
separate simulation over a period of time (defined by the case) with the detailed national and 
metropolitan models.  
 
Table 1 Decision Metrics for CIP/DSS Proof-of-Concept 
 Category Metric Units 
1 Human health and safety Total fatalities (public and occupational) deaths 
2 Economic damage Initial direct costs (e.g., cleanup, repair) $ 
3 National security Delay in force deployment capability  days  
4 Socio-political Public confidence  index 
5 Environmental impacts Unusable city blocks blocks 
6 Environmental impacts  Unusable farmland  acres 
 
Table 2 summarizes the scenarios that are associated with each case and that need to be 
simulated by the models. 
 
Table 2 Scenarios to be Simulated with the Infrastructure Models for Each Case 
Scenario Name  Description 
Base Readiness Business as usual conditions; consequences in the absence of 

terrorist events 
Base Incident Postulated event occurs with no additional optional measures 

                                                 
8  The decision metrics listed in Table 1 represent a minimum set selected for the proof-of-concept. A more 

extensive set is under development for future versions. 
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implemented, beyond what exists at the time 
Alternate Readiness 1 A specific set of additional optional measures are in place; 

postulated event is not initiated 
Alternate Incident 1 Alternate Readiness 1 optional measures are in place; postulated 

event occurs 
. 
. 
. 

. 

. 

. 
Alternate Readiness N A specific set, different than other Readiness Scenarios, of optional 

measures are in place; postulated event is not initiated 
Alternate Incident N Alternate Readiness N optional measures are in place; postulated 

event occurs 
 
The models are intended to identify, for each scenario of a given case, a set of consequences 
given by a vector, C, consisting of values for decision metrics, such as listed in Table 1.9 For the 
purposes of this paper, let us consider the vector C to have only the 6 components shown in 
Table 1 (assume the values are summed over time without discounting over time).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Analysis Framework for DHS Optional Measures with CIP/DSS 
 

                                                 
9 The vector C is an array of values over the different consequence metrics and over time, where the time interval 

depends on the particular case. 
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Figure 1 demonstrates the overall analysis framework as CIP/DSS assists DHS in analyzing 
alternative optional measures that include prevention, protection, mitigation, response, and 
recovery.  
 
 
2.  UNCERTAINTIES 
 
A brief examination of what is meant by uncertainty is in order before proceeding to 
recommended approaches. Kaplan10 has presented a historical view of uncertainty analysis that 
relates modern views of uncertainty with ancient foundations and provides a sense of the 
difficulty in arriving at a precise description of uncertainty. For the purposes of the current effort, 
the definition of uncertainty from the draft ASME report11 on risk analysis and management 
should suffice: 
 

A measure of knowledge incompleteness due to inherent deficiencies in acquired 
knowledge. Also, a characterization of the degree to which the state of a system is 
unsettled or in doubt, such as the uncertainty of an outcome. In a quantified risk 
assessment, uncertainty is a representation of the confidence in the state of 
knowledge about the models and parameter values used.  

 
Although point values for consequence metrics are acceptable, decisions that are aided by 
CIP/DSS results would be more informed if the results reflected uncertainties, such as those 
introduced by CIP/DSS parameters and inputs (e.g., weather conditions at the time of an attack 
simulated by the Base Incident Scenario). Presenting the ranges for important CIP/DSS results 
may be appropriate to give users an appreciation of the extent of uncertainty. In addition, the 
decision analysis module allows CIP/DSS to account for risk attitudes other than risk neutral. 
DHS may wish to examine the implications for appropriate spending on protective measures if 
the government were to behave in a risk averse fashion rather than risk neutral for some or all 
decision metrics. Our society’s relatively greater concern over a low probability and high 
consequence event versus a high probability and low consequence event with the same expected 
value for consequences is an indication that risk neutrality does not always match up well with 
public concerns.  
 
Uncertain results from CIP/DSS could always be reduced to point values for simplicity or for 
users who do not care to address uncertainties. Thus, adding the capability to address uncertainty 
in CIP/DSS does not necessarily mean increasing complexity of presenting results.  
 
There are a number of sources of uncertainties present in CIP/DSS analysis: 

 
1. Structural. Uncertainty is introduced into the consequence metrics because of assumed 

functional relationships within and between (i.e., interdependencies) infrastructure 

                                                 
10  Kaplan, Paul G., From “The Art of Conjecture” to “The Science of Inference:” A Historical Tour of 

Uncertainty Analysis, Sandia National Laboratories, presented at PMC 2002.  
11  American Society of Mechanical Engineers (ASME), Guidance on Risk Analysis and Management for 

Critical Asset Protection, draft report submitted to the U.S. Department of Homeland Security, April 2, 2004. We 
note that a July 30, 2004 draft is now available. 
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models. An example is the quantity of electricity produced from an electrical generating 
unit, given the load, weather, availability of other generating units, and other important 
conditions. That is, the actual amount of electricity from that generating unit for those 
conditions is only approximated by mathematical relationships used in the CIP/DSS 
energy infrastructure model. A related example involving an interdependency is the 
quantity of natural gas used by that generating unit, if it were a natural-gas-fired 
generating unit. Such structural uncertainties in the models can have a major impact on 
consequences.  

2. Inherent Randomness. Uncertainty is introduced into consequence metrics because of 
inherent randomness in the physical world and CIP/DSS input parameters. An example is 
the forced outage of an electrical generating unit, which affects the quantity of generation 
from other generating units, which in turn affects some consequence metrics, such as 
electricity cost and environmental impacts associated with electricity generation. 

3. Lack of Knowledge. Uncertainty is introduced into consequence metrics because of lack 
of knowledge about input parameters, such as in relationships used to estimate 
consequences. An example is the dose/response relationship that estimates the number of 
fatal cancer cases for a given integrated population exposure to radiation. Many 
dose/response relationships remain the subject of ongoing research and are imprecise. 
Educated estimates of remaining uncertainty are often available.  

4. Estimating Future Conditions. Uncertainty is introduced into consequence metrics 
because of the need to estimate model input parameters at a future point in time. 
Examples include the average premium for property/casualty insurance and the telephone 
call overload shape function (overload level vs. time). The historical information often 
gives an excellent starting point, but, presumably, future conditions and characteristics of 
the scenario could affect these parameters. The importance of this category of uncertainty 
increases as the time horizon of the CIP/DSS study increases.  

5. Threat Characterization. Uncertainty is also introduced as a result of the probability of 
attack and threat scenarios. This category of uncertainty is addressed in the discussion of 
risk in Sec. 3.  

 
The structural uncertainties in the models need investigation before significant effort is expended 
addressing the effect of parameter uncertainties. In particular, the potential effect of structural 
uncertainties on the key consequence metrics needs to be estimated. If the level of uncertainty 
associated with a particular assumed structural relationship is high, consideration should be 
given to defining a new input parameter that specifically addresses that uncertainty. If the 
uncertainty in consequence metrics introduced by structural uncertainties can be shown to be 
very small compared to the uncertainty in consequence metrics introduced by uncertain input 
parameters, it may be possible to avoid treating structural uncertainties explicitly.  
 
Given that a mathematical model is a formal statement of assumptions about a relationship 
among known inputs x and predicted outputs y, the structure of a model defines how the 
characteristics y are determined from x. It is usually a mathematical algorithm or set of 
computational rules that map x into y. This set of algorithms or rules can combine elements from 
random number streams in stochastic models (or not and result in a deterministic model). 
Structural uncertainty arises from variation in y observed from plausible alternative model 
structures. Let M  = { m(x; z; θ) | θ ∈ Θ } define the set of alternative plausible models. In 
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general θ is an enumeration of models or is a means to index a family of models. In practice, 
alternative models are typically explored, albeit mainly to improve the accuracy, runtime, or 
clarity of the model. It is relatively rare to explore the uncertainty induced on the output by 
variations in the structure. The recommended approach for this project is to acknowledge the 
existence of uncertainty arising from the structure of the model, but to admit the impracticality of 
exploring that uncertainty due to resource constraints.  
 
2.1 Sampling Approaches to Addressing Uncertainty in Input Parameters  
 
Estimating the uncertainty in consequence metrics is a desirable feature for CIP/DSS. The 
uncertainty in input parameters may stem from several sources, including inherent randomness, 
model structure, lack of knowledge, or the need to estimate future conditions. Sampling-based 
approaches to uncertainty and sensitivity analysis are both effective and widely used12. Analyses 
of this type involve the construction and exploration of a mapping from uncertain analysis inputs 
to uncertain analysis results. The basic idea is that analysis results y = m(x) = [y1(x), y2(x), …, 
ynk(x)] are functions of uncertain analysis inputs x = [x1, x2, …, xnk]. In turn, uncertainty in input 
x results in a corresponding uncertainty in output y. This leads to two questions:  
 

a) What is the uncertainty in y(x) given the uncertainty in x?, and  
b) How important are the individual elements of x with respect to the uncertainty in y?  

 
Uncertainty analysis addresses the first question, and sensitivity analysis addresses the second. In 
practice, the process of performing an uncertainty analysis is very similar conceptually and 
computationally to doing sensitivity analysis.  
 
Implementation of a sampling-based uncertainty and sensitivity analysis involves five 
components:  

1. Definition of distributions D1, D2, …, Dnk that characterize the uncertainty in the 
components x1, x2, …, xnk of x,  

2. Generation of a sample x1, x2, …, xnS from the x’s in consistency with the distributions 
D1, D2, …, Dnk,  

3. Propagation of the sample through the analysis to produce a mapping [xj, yj], j = 1, 2, …, 
nS, from analysis inputs to analysis results,  

4. Presentation of uncertainty analysis results (i.e., approximations to the distributions of the 
elements of y constructed from the corresponding elements of yj, j = 1, 2, …, nS), and  

5. Determination of sensitivity analysis results (i.e., exploration of the mapping [xk, yj], j = 
1, 2, …, nS). 

 
Definition of the distributions D1, D2, …, Dnk that characterize the uncertainty in the components 
x1, x2, …, xnk of x is the most important part of a sampling-based uncertainty and sensitivity 
analysis as these distributions determine both the uncertainty in y and the sensitivity of y to the 
elements of x. The distributions D1, D2, …, Dnk are typically defined through an expert review 
process (or examination of appropriate data), and their development can constitute a major 
analysis cost. A possible analysis strategy is to perform an initial exploratory analysis with rather 
                                                 
12 Helton, J.C. and F.J. Davis. 2000. "Sampling-Based Methods for Uncertainty and Sensitivity Analysis," Sensitivity 
Analysis. A. Saltelli, K. Chan, and E.M. Scott (eds). New York, NY: Wiley. pp. 101-153. 



CIP/DSS Uncertainty and Risk  9/2/2004 

7 

crude definitions for D1, D2, …, Dnk and use sensitivity analysis to identify the most important 
analysis inputs; then, resources can be concentrated on characterizing the uncertainty in these 
inputs and further analysis can be carried out with these improved uncertainty characterizations.  
 
Several sampling strategies are available, including random sampling, importance sampling, and 
Latin hypercube sampling. The latter is very popular for use with computationally demanding 
models because its efficient stratification properties allow for the extraction of a large amount of 
uncertainty and sensitivity information with a relatively small sample size. In addition, effective 
correlation control procedures are available for use with Latin hypercube sampling. The 
drawback of Latin hypercube sampling is that it can lead to biased estimates.  
 
Propagation of the sample through the analysis to produce the mapping [xk, yk], k = 1, 2, …, nS, 
from analysis inputs to analysis results is often the most computationally demanding part of a 
sampling-based uncertainty and sensitivity analysis. The details of this propagation are analysis 
specific and can range from very simple for analyses that involve a single model to very 
complicated for large analyses that involve complex systems of linked models. 
 
Presentation of uncertainty analysis results is generally straightforward and involves little more 
than displaying the results associated with the already calculated mapping [xk, yk], k = 1, 2, …, 
nS. Presentation possibilities include means and standard deviations, density functions, 
cumulative distribution functions (CDFs), complementary cumulative distribution functions 
(CCDFs), and box plots. Presentation formats such as CDFs and box plots are usually preferable 
to means and standard deviations because of the large amount of information that is lost in the 
calculation of means and standard deviations. 
 
Determination of sensitivity analysis results is usually more demanding than the presentation of 
uncertainty analysis results due to the need to actually explore the mapping [xk, yk], k = 1, 2, …, 
nS, to assess the effects of individual components of x on the components of y. Available 
sensitivity analysis procedures include examination of scatterplots, regression analysis, 
correlation and partial correlation analysis, and other standard statistical techniques.  
 
Sampling-based uncertainty and sensitivity analysis is widely used, and as a result, is a fairly 
mature area of study.  However, a significant challenge is the education of potential users of 
uncertainty and sensitivity analysis about such issues as: 
 

• The importance of such analyses and their role in both large and small analyses; 
• The need for an appropriate separation in the conceptual and computational 

implementation of analyses of complex systems of aleatory  (irreducible uncertainty 
resulting from inherent variability of a quantity) from epistemic (theoretically reducible 
uncertainty resulting our lack of knowledge about a quantity) uncertainty  

• The need for a clear conceptual view of what an analysis is intended to represent and a 
computational design that is consistent with that view, and  

• The importance of avoiding deliberately conservative assumptions if meaningful 
uncertainty and sensitivity analysis results are to be obtained. 
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The Vensim modeling approach offers a powerful, convenient, but somewhat limited way to 
examine model and input uncertainties. Monte Carlo simulation can be automated and conducted 
conveniently in each infrastructure model, such that the effect of variation in important input 
parameters on key consequence metrics can be examined. Model inputs can be varied according 
to a specific list of values, range of values, or according to specified probability distributions. 
Model outputs are specified and the effect of the variation of the inputs can be seen on these 
variables. In the figure below, hospital bed utilization, a metric of the public health model, is 
examined as the major inputs to the public health model are assigned a uniform random 
distribution over their individual minimum and maximum values. A significant assumption for 
these runs is that all infrastructure systems are fully functional. 
 

P-SA-All
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The chart shows the observed variation in bed utilization over a 28 day period by examining the 
output of 500 runs of the model. In each run, a new set of inputs was sampled from the 
probability distributions of the inputs; the model was executed, and the output values stored. 
Latin Hypercube sampling (LHS) is a stratified sampling technique where the random variable 
distributions are divided into equal probability intervals. A probability is randomly selected from 
within each interval for each sample. This distributes input samples over equi-probable bins, 
making it more likely that a representative range of the input space is sampled. In the figure 
above, the green and yellow central regions represent those simulation runs that accounted for 
70% of the observed values. The blue line splitting the yellow region is the value of a single run 
based on the default input values to the model. The utilization for this (blue) run tends to 
stabilize near 0.7. The width of the 70% variation region on day 28 is about 0.50 for a ratio of 
approximately 0.70 (0.50/0.70). 
 
This approach to inspecting the sensitivity of the sector models and subsector elements was 
applied to the Metropolitan model and is discussed in the documentation for those sectors13. In 
these analyses, a significant assumption was that the inputs were uncorrelated, as each sector 
model was exercised for sensitivity independent of the inputs used to initialize the remaining 
                                                 
13 Bush, Brian, et al.,  “Documentation for the Metropolitan Model of the Critical Infrastructure Protection Decision 
Support System,” Los Alamos National Laboratory report LA-UR-xxxx-04, in development. 
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sector models. Due to the lack of adequate data, it was infeasible to derive an estimate of the 
correlation of the metropolitan inputs. The sensitivity analysis was nonetheless useful. It 
identified several shortcomings in the models; enabled an initial assessment of potential model 
uncertainty; and helped build confidence that the models were exhibiting expected behaviors. 
 
While this sensitivity approach is useful for visual inspection of model output variation due to 
uncertainties in inputs, it lacks the ability to identify the relative importance of input parameters. 
Adoption of techniques for more precise statistical estimation of uncertainty, sensitivity, and 
importance, as discussed in Saltelli14 is desired.  
 
2.2 Generalized Approaches to Addressing Uncertainty in Input Parameters  
 
The sampling approach outlined above works well when uncertainty about input parameters can 
be precisely stated, for example as coming from a particular probability distribution Dk for input 
variable xk. But probabilistic characterizations can give the appearance of more knowledge than 
is really present, and alternative representations for uncertainty merit consideration for their 
potential to represent uncertainty in situations where little information is available.  
 
Generally, it might be the case that only limited or qualitative information about the uncertainty 
of a parameter xk is known, for example its shape, or its minimum or maximum values, or its 
moments (mean and variance), or perhaps just its parametric family (for example being normal 
or beta). Methods based on “random intervals” and “probability boxes” (p-boxes)15 are available 
for handling these situations. These methods are closely related to alternative uncertainty 
quantification techniques including fuzzy systems, possibility theory, Dempster-Shafer evidence 
theory, random sets, and imprecise probabilities16. Some of these will also be considered under 
Risk in Section 3 below, and we can collectively identify these as Generalized Information 
Theory (GIT)17 approaches. 
 
GIT techniques do work not with single probability distributions, but rather with collections of 
them. As an example to be used in this subsection, we will consider the Metropolitan Food 
sector, for which an initial analytical treatment is currently underway18. Given the following 
distributional assumptions about certain internal and external variables: 
 

Water demand rate currently supplied, commercial: W = Beta(4,1) 
Electrical fraction available, industrial: E = Beta(25,1.3) 

                                                 
14 Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M, Sensitivity Analysis in Practice: A Guide to Assessing 
Scientific Models, Wiley & Sons, New York, NY, 2004. 
15 Ferson, Scott; Kreinovich, V; Ginzburg, LM; D.S. Myers and K. Sentz: (2002) “Constructing Probability Boxes 
and Dempster-Shafer Structures'', SAND Report 2002-4015, Sandia National Lab, Albuquerque NM, 
http://www.sandia.gov/epistemic/Reports/SAND2002-4015.pdf 
16 Joslyn, Cliff and Booker, Jane: ``Generalized Information Theory for Engineering Modeling and Simulation'', in: 
Engineering Design Reliability Handbook, ed. E Nikolaidis  and  D Ghiocel, CRC Press, in press 
17 Klir, George and Wierman, Mark J: (1999) Uncertainty-Based Information Elements of Generalized Information 
Theory, Springer-Verlag,Berlin 
18 Joslyn, C and Bettencourt, L (2004): “Analytical Representation and Uncertainty Quantification of the Food 
Sector”, in preparation 
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Transportation fractional free flow: T = Beta(1.5,.6) 
Time from Raw to Processed: TRP = Normal(3,.25) 
Time from Processed to Retail: TPR = Normal(7,1) 

 
we can derive the following sensitivity analysis of the amount of uncontaminated beef processed 
from sampling: 

 
 
Again, here we presumed that TPR is normally distributed with mean 7 and standard deviation 1, 
which is shown below as norm in black as the particular cumulative distribution Normal( 7, 1 ). 
But instead, we may know that: 
 

• TPR is normally distributed, but all we know about the mean is that it is in the interval 
[6,8], and all we know about the standard deviation is that it’s in the interval [.5,1.5]. 
This can be characterized as a GIT structure known as a p-box, which is a statistical 
representation of a random interval, also known as a Dempster-Shafer uncertainty 
structure on the line19. This p-box is shown in the figure below as normint in red. 

• Alternatively, we may still know that TPR has a precise mean 7 and standard deviation 1, 
but that is all we know; in particular, TPR could be drawn from any parametric family of 
distributions, not just normals. This can, in fact, be represented, and indeed is shown as 
the p-box meanst in blue.  

                                                 
19 Joslyn, Cliff and Ferson, Scott: (2004) ``Approximate Representations of Random Intervals for Hybrid 
Uncertainty Quantification'',  in: 4th Int. Conf. on Sensitivity Analysis of Model Output (SAMO 04), 
ftp://ftp.c3.lanl.gov/pub/users/joslyn/samo04.pdf 
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This discussion is merely exemplary, and in any particular situation, determination of the proper 
way to quantify information about a particular variable, in addition to the actual numbers to use, 
depends on the interaction between the model builder and the relevant data resources, including 
content experts. In some cases, the model builders may only have access to the most qualitative 
information, such as a variable being between two landmark values, or even linguistic 
information such as “very large”. While methods to accommodate all of these cases is part of a 
wider GIT program involving fuzzy systems and possibility theory16, here we will consider those 
cases which allow characterization of the uncertainty of variables in terms of p-boxes. 
 
In any event, returning to our example, each of the p-boxes meanst and normint are the 
regions containing all the cumulative distributions satisfying their respective criteria. Note that 
while they are similar, they are also subtly different, although in each case, the single distribution 
Normal( 7, 1 ) is included as one possible single cumulative distribution within the p-box in 
question. This reflects the great constraint present in specifying a particular distribution, as 
distinguished from the relative lack of constraint present in the actual information available to 
characterize the variable. Thus given either of these alternate scenarios, the p-box representations 
are more accurate, reflecting the greater range of uncertainty present, and most importantly not 
forcing the investigator to select exactly one particular distribution. 
 
Risk and reliability approaches using GIT treatments of uncertainty are in active development20. 
Given a GIT representation of uncertainty, a complete analysis can then proceed in multiple 
ways. 
 
First, an analytical approach is possible. In the Metropolitan Food sector, Joslyn and 
Bettencourt18 have made an initial determination that the long-term qualitative behavior of the 
amount of uncontaminated beef processed is sensitive to the sign of the quantity ω = 4α β – β2, 
where α = WE/TRP and β = TE/TPR. The first figure below shows the four single cumulative 
distributions for W, E, TRP, and TPR, while the second figure shows the p-boxes for α, β, and ω 
derived by convolution of the algebraic equations under the assumption of independence. Note 
                                                 
20 Helton, JC and Oberkampf, WL eds.: (2004) “Special Issue: Alternative Representations of Epistemic 
Uncertainty”, Reliability Engineering and Systems Safety, v 95:1-3 
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that these intermediate quantities in the lower figure have substantial “width” to them, and thus 
greater uncertainty than can be captured by the requirement of determining individual 
distributions. In particular, note that the p-box for ω spans zero, indicating that there is enough 
uncertainty present in the input parameters to make the long-term behavior difficult to predict 
even at the qualitative level.  
 

 

 
 
However, there are many reasons why purely analytical approaches to CIP/DSS models are not 
generally feasible, and thus the greater accuracy provided by GIT representations of uncertainty 
must be balanced against the greater difficulty of working with them (for example, Vensim does 
not support GIT methods). Instead, sampling approaches to GIT treatments of risk problems are 
in active development21,22, including early work on their use specifically for sensitivity 
analyses23  
                                                 
21 JC Helton, JD Johnson, and WL Oberkampf, "An Exploration of Alternative Approaches to the Representation of 
Uncertainty in Model Predictions", Reliability Engineering and Systems Safety, v. 95:1-3, pp. 39-72 
22 Joslyn, Cliff and Kreinovich, Vladik: (2004) “Convergence Properties of an Interval Probabilistic Approach to 
System Reliability Estimation”, Int. J. General Systems, in press 
23 J. C. Helton, J.D. Johnson, W.L. Oberkampf, and C.J. Sallaberry, "Sensitivity Analysis in Conjunction with 
Evidence Theory Representations of Epistemic Uncertainty", Reliability Engineering and Systems Safety, in press 
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This subsection is intended only to indicate future direction of these classes of approaches. All of 
the subjects mentioned here are areas of current research. 
 
2.3 Using Monte Carlo Output in the Decision Analysis Module 
 
An important characteristic of the decision analysis methodology being applied in CIP/DSS is 
that it is highly suited for Monte Carlo simulation. For each individual run of the infrastructure 
models, a set of decision metrics is produced. The utility function operates on each individual 
run to produce a utility value. The variation in utility values across the numerous runs of the 
infrastructure is an important, observable characteristic. The distribution of utility values for the 
runs allows us to compute a mean and standard deviation, as well as ultimate ranges. The 
principles of utility theory allow us to use expected utility to determine preferred courses of 
action. 
 
When examining two different (but structurally identical) scenarios (e.g., base incident and 
alternate incident 1) within the same case, starting with the same random number seed for all 
Monte Carlo runs offers the potential to compute a distribution of utility differences between the 
scenarios that is, in a sense, not dependent on the sequence of random numbers generated in the 
simulation (this will be especially helpful in comparing results based on 2 or more different 
decision-maker profiles). The mean value for the difference in utility can be computed along 
with statistical characteristics. In addition, when the utility values for the two scenarios are close, 
we can also compute the probability that the utility of one scenario is greater than the other. This 
approach also may serve to reduce some of the inherent uncertainties (e.g., a consequence metric 
that tends to be greater when the weather is hot will be consistent between the two scenarios 
because the Monte Carlo drawing for the weather is the same in each scenario).  
 
It should be noted that the expected utility of uncertain decision metrics (e.g., 1,000 sets of the 
decision metrics for each of 1,000 model runs using Monte Carlo simulation) is generally not 
equal to the utility of the expected values of the decision metrics. That is, if we eliminate the 
uncertainty by using expected values for each decision metric and then operate on those single 
values with the utility function, we will generally obtain a different utility than when we compute 
the individual utility of the decision metrics produced from each Monte Carlo run and then 
determine the expected value for that array of utility values. The preference assessment to obtain 
the utility function is conducted under conditions of uncertainty, and therefore accounts for risk 
attitudes (risk averse, risk neutral, or risk prone) of the decision maker. If the decision-maker 
profile being used is not completely risk neutral, the difference in the calculation described 
above is critical.  
 
The loss-of-load probability (LOLP) for an electrical generating system with a large quantity of 
hydroelectric generation can be used to illustrate this point. An LOLP equal to or less than 1 day 
in ten years (2.7 x 10-4) is considered to be very good for an electrical generating system. An 
LOLP greater than 1 day per year (2.7 x 10-3) is considered to be not so good. Suppose the 
hydroelectric generation varies considerably from year-to-year, and the probabilities of those 
types of years, based on extensive historical data, can be characterized as shown in Table 3.  
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Table 3  Hydroelectric Generation Characteristics and Calculation of LOLP 

Type of 
Hydro Year 

Probability of 
Occurrence 

Hydro Generation 
(Megawatt-hours [MWh]) 

Loss-of-Load 
Probability (LOLP) 

Very wet 0.10 10,000 0.0 

Wet 0.25 8,000 0.0 

Normal 0.30 6,000 0.0 

Dry 0.25 4,000 5.4 x 10-3 

Very dry 0.10 2,000 13.7 x 10-3 
 
Further suppose the LOLP is 0.0 (no failures) whenever hydroelectric generation is 6,000 MWh 
or more, and the LOLP is two days per year (5.4 x 10-3) at 4,000 MWh and is 5 days per year 
(13.7 x 10-3) at 2,000 MWh. Expected annual hydro generation is 6,000 MWh: therefore, the 
LOLP of the expected value for hydro generation is 0.0 (no outages; perfect performance). 
However, the expected LOLP (computed by weighting the LOLP for each type of hydro year by 
its probability) is 2.7 x 10-3 (not so good). Two completely different answers are obtained based 
on when the uncertainty was addressed. The calculation of expected utility rather than utility of 
expected consequences exhibits similar characteristics. 
 
 
3.  RISK 
 
The draft ASME report defines risk as: 
 

The combination of the probability and consequences of an adverse event (i.e., 
threat). When the probability and consequences are expressed numerically, risk is 
the product of those values, which are combined considering uncertainties. Since 
probability and consequences are usually expressed as ranges rather than point 
values (to account for uncertainties associated with their computation), risk can 
generally be expressed in terms of a mean value and upper and lower bounds (or 
range). When expressed qualitatively, risk may be represented by the probability 
and consequences as indicated by their relative positions on a risk matrix. 
However, it is usually desirable to express qualitatively derived probabilities and 
consequences numerically so risk values can be compared to the results of other 
analyses.  

 
Analysis conducted with CIP/DSS is intended to assist in addressing risk and investment 
strategies, such as:  
 

• Incorporating consequence, vulnerability, and threat information into an overall risk 
assessment, what are the highest risk areas? 

 
• What investment strategies can be made that will have the most impact in reducing 

overall risk? 
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DHS needs to demonstrate a rational approach to funding preventive and protective measures 
and consequence mitigation, response, and recovery strategies. Given the relatively large 
resources dedicated to DHS, scrutiny is to be expected, such as the Time article entitled “How 
We Got Homeland Security Wrong.”24 The article stated that the vast majority of 2003 federal 
agency grants totaling $13.1 billion to states and localities for homeland-security purposes “was 
distributed with no regard for the threats, vulnerabilities and potential consequences faced by 
each region.” Although federal agencies must operate in a political environment and obtain 
Congressional approval for spending patterns, analysis of funding options with CIP/DSS should 
assist DHS in making risk reduction one of the important factors in such funding decisions and in 
presenting risk-informed funding recommendations to Congress.  
 
Risk is measured as a combination of probability of attack and consequences given an attack, 
each of which may be uncertain. As described in Sec. 2, various options are available for 
estimating the uncertainty in decision metrics. Uncertainties with respect to type, nature, and 
frequency of threat are much greater than most other problems that have been historically 
studied. For this reason, various advanced methods, including possibility theory, fuzzy sets, and 
approximate reasoning are being investigated to help address threat.25 Probabilistic techniques 
are considered less appropriate because terrorist actions are intentional, not random, and detailed 
statistical analysis of past data is insufficient given the dynamic nature of the problem.26 
 
Although it is not within the CIP/DSS work scope to estimate probability of attack, CIP/DSS 
must be able to accommodate the form of threat information available to DHS. At this time, it 
appears that reduction of threat information to a probability of attack, with a range of 
uncertainty, is feasible. However, further investigation and work with DHS is needed to verify 
this approach.  
 
If probability of attack data is available, with an uncertainty range, the resultant risk can be 
portrayed using the combined uncertainties from the CIP/DSS decision metrics and from the 
threat. A typical application will involve comparing a base scenario (no additional investments 
beyond existing measures) with an alternate scenario that includes investments for various 
optional measures. Since the investment in optional measures is made before the attack, the 
comparison ultimately comes down to risk reduction (measured by comparing outputs from the 
CIP/DSS decision analysis module for the base scenario and for the alternate scenario combined 
with the probability of attack) versus expenditures for optional measures. By examining different 
investment strategies with CIP/DSS (e.g., different optional measures or different levels of 
implementation or different locations for implementation), DHS can gather information on what 
appropriate investment strategies might be, given the threat information.  
 

                                                 
24  Ripley, Amanda, “How We Got Homeland Security Wrong: The Fortification of Wyoming, and Other 

Strange Tales from the New Front Line,” Time, March 29, 2004 (pp. 32 -37).  
25  Darby, John, Evaluating Terrorist Risk Using Possibility Theory, Fuzzy Sets, and Approximate Reasoning, 

Los Alamos National Laboratory.   
26  Darby, J., B. Bush, S. Eisenhawer, and T. Bott, Methodology for Optimizing Allocation of Resources to 

Protect Infrastructure against Acts of Terrorism, Los Alamos National Laboratory, LA-UR 04-0590 (Dec. 8, 
2003).  
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It should be noted that DHS investment strategies in an alternate scenario may change the 
probability of attack and/or its uncertainty when compared to a base scenario. For example, the 
threat of airplane hijacking has presumably been reduced by introduction of new security 
procedures, barriers preventing cockpit entry, and wider use of air marshals. Thus, we are 
currently living the alternate scenario in which those investments have been made and the 
probability of hijacking is less than it would have been in the base scenario (without those 
measures). CIP/DSS needs a framework to allow adjustment of probability of attack based on 
what optional measures are implemented in the alternate scenario.  
 
Another way in which CIP/DSS information can be useful to DHS is to estimate the minimum 
probability of attack that justifies implementing a particular set of optional measures. That is, a 
base scenario and an alternate scenario are analyzed as usual with CIP/DSS. The reduction in 
consequences, as measured by CIP/DSS decision metrics, between the alternate scenario and the 
base scenario is then compared with the investment costs to determine the minimum probability 
of attack at which these particular investments are justified. Any probability of attack equal to or 
greater than this minimum would indicate that the alternate scenario investments are appropriate.  
 
Considering the uncertainty in decision metrics, an upper and lower bound for the minimum 
probability of attack that justifies implementing a particular set of optional measures can be 
estimated using CIP/DSS. This range for minimum probability will help CIP/DSS users realize 
that, although extensive calculations lie behind the CIP/DSS outputs, considerable uncertainty in 
results will often be the case.  
 
Of course, there are numerous threats (chemical, biological, explosives, natural disasters, etc.) 
and DHS investment strategies to investigate. To the extent that a representative basis set of 
attacks can be defined by DHS, CIP/DSS could be used to examine the entire set and indicate 
what types of optional measures look best overall, given the current thinking on probabilities of 
attack for the various types of threats. Some optional measures are likely to be good investments 
even though they are not justified for any single type of threat because they serve to reduce risk 
for more than one type of threat. Once CIP/DSS has been set up to examine a certain type of 
threat, the capability to change the probability of attack for any threat (e.g., to reflect new 
information) and examine the appropriate scenarios quickly will be a genuine strength of the 
analytic procedure.  
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