[MzBe 92]

[MzBH 93]

[MzBM 92]

[MzBM 93]

[Mokw 95]

[PoVM 94]

[Ramm 89]

[Shne 92]

236

E. Meyer zu Bexten: Eine Simulationsumgebung fij,
signalverarbeitende Systeme, Dissertation, Universitdt Dort.
mund, Fachbereich Informatik, Shaker Verlag, Aachen, 1992

E. Meyer zu Bexten, D. Heinen, C. Moraga: AUCA: A Tool for
Presentation and Analysis of CAD-Simulation Results, Pro-
ceedings of the HCI International 93, Orlando FLA, USA,
Elsevier Science Publishers, pp. 267-272, 1993

E. Meyer zu Bexten, C. Moraga, J. Biiddefeld: A High-Leve]
Interactive Design Environment for Complex Systems, in:
Computer Aided System Theory - EUROCAST '91, Lecture
Notes in Computer Science, Vol. 585, Springer-Verlag, Berlin,
pp- 442 - 459, April 1992

E. Meyer zu Bexten, C. Moraga: Simulation fiir die Systemebene
(Elektronik-Cad: Werkzeuge zur Unterstiitzung der frithen Phasen
des Schaltungsentwurfs), Elektronik Journal, Europa-Fach-
presse-Verlag, Miinchen, 28. Jahrgang, Ausgabe 12, S. 16-23,
September 1993

W. Mokwa: Mikrosystemtechnik - Entwicklung und Marktum-
setzung, 9. Fachtagung Mikroelektronik, Baden-Baden, Mirz
1995

J. Poswig, G. Vrankar, C. Moraga: VisaVis: A Higher-order
Functional Visual Programming Language, Journal of Visual
Languages and Computing, 5, pp. 83-111, 1994

F. Rammig: Systematischer Entwurf digitaler Systeme, Teubner
Verlag, Stuttgart, 1989

B. Shneiderman: Designing the User Interface: Strategies for
efficient Human-Computer Interaction, Addison-Wesley
Publishing Company, New York, 1992

¥

CAST Extensions to DASME to Support
Generalized Information Theory

Cliff Joslyn! and Scott Henderson?

! Code 522.3, NASA Goddard Space Flight Center
Greenbelt, MD 20771, USA
joslyn@kong.gsfc.nasa.gov

http://groucho.gsfc.nasa.gov/joslyn

2 Senior Scientist, Cambridge Research Associates

1430 Spring Hill Rd. Suite 200, McLean, VA 22102, USA
scott@cambridge.com

Abstract. The Data Analysis and System Modeling Environment (DASME)
is a computer-assisted modeling environment, currently under develop-
ment at NASA’s Goddard Space Flight Center, designed to support
ground-based mission operations with a mixed discrete/continuous mod-
eling capability. This paper describes planned cAsT-based extensions to
DASME to support a broader range of systems theoretical computing mod-
els, and in particular models utilizing concepts from Generalized Informa-
tion Theory (GIT) such as fuzzy systems, possibilistic measurement, and
possibilistic processes. Support for model-based diagnostics and trend
analysis of spacecraft systems is targetted.

1 Introduction

This paper describes a software systems development project ongoing in the Soft-
ware and Automation Systems Branch (Code 522) of NASA’s Goddard Space
Flight Center in Greenbelt, Maryland. Code 522’s role—within the overall God-
dard mission of Earth and space science research with earth-orbiting satellites—
is to conduct research and development to support mission operations and data
systems. Code 522 provides systems engineering, development, and operation
tools, and prototypes demonstrating new technologies and advanced systems
architectures. Their areas of technology expertise span from systems modeling
and human-computer interaction to software engineering and knowledge-based
systems.

The overall thrust of Code 522 research is to move towards increasing au-
tonomy and automation of both spacecraft platforms and their ground-based
control and support systems. The foreseen development path moves from rule-
and object-based approaches, characteristic of expert systems; through model-
based approaches, typical of enhanced knowledge-based systems; and aiming
towards sophisticated agent-based AI approaches.

One of the important research areas of Code 522 is the development of meth-
ods for trend analysis of spacecraft systems and components. In trend analysis,

238

mathematical representations of spacecraft health are developed from telem
try analysis. These analysis methods are then employed to reveal any long-tere‘
trends indicating degradation in system health, or any incipient threat of fa.ilurl.;:rl
The initial focus of the trend analysis program is the battery subsystem.
for the Small Mission EXplorer (SMEX) family of missions. Batteries provide
particular challenge for trend analysis because of the complexity of their envia
ronments (loads and charges) and the complexity and inherent limitations in ou-
knowledge of their electrochemical dynamics. These conditions have resulted ir:

great difficulties in battery quality assurance, and a number of spacecraft plat.

forms are at risk for failure.

Existing Code 522 facilities for trend analysis provide only basic visualization
and rudimentary statistical analysis of telemetry. More sophisticated approaches
to supplement these methods are under development, including a Model-Baseq
Diagnostic (MBD) approach.

In addition, due to the many forms of uncertainty inherently present in com-
plex engineering systems like spacecraft, and especially in their battery subsys-
tems, Qualitative Modeling (QM) methods for MBD are especially appropriate
[10]. To support qualitative MBD, we plan to use the Generalized Information
Theor.y (61T) computational paradigm, and especially its possibilistic modeling
Fechmques. GIT is the synthesis of modern mathematical theories of uncertainty
including fuzzy systems, random sets, evidence theory, and possibility theory’
[9, 16, 17]. GIT promises to provide a key generalizing technology for QM meth-
ods in systems theory [9, 11].

This paper describes the Data Analysis and Systems Modeling Environment
(DASME), which is being used as the development environment for this approach
and our proposed CAST-based extensions to DASME to support a broader rangé
of computational models (for example finite automata, petri nets, or neural
nets), and especially a qualitative approach to MBD using possibility theory and
possibilistic processes.

2 The Data Analysis and Systems Modeling Environment
(DASME)

DASME is a computer-assisted modeling platform developed by Henderson to
support ground-based mission operations. It has the dual capacities of telemetry
analysis and systems modeling using a mixture of discrete-event and discrete-
time methods. DASME’s general and flexible architecture allows it to be easily
adapted to fulfill multiple tasks, although it will be first applied in model-based
trend analysis of spacecraft battery subsystems.

2.1 DASME Design

DASME is a collection of behavioral components, input components, output com-
ponents, a graphical model editor, and a run-time executive.

239

Behavioral components simulate specific elements within the domain (cur-
rently satellite power systems) and were implemented as a library of C++ classes.
Input components were derived from this same class hierarchy to feed the simula-
tion with file-based data streams or direct user input. Output components (also
a part of the class library) produce dynamic plots of their inputs, or transmit
those values to a CLIPS environment for processing by expert systems.

The X-Windows based graphical model editor allows the synthesis of com-
plex hierarchical models by connecting the input and output ports of behavioral
components, input/output components, or other models. This editor also allows
“zooming” into sub-models for inspection or adjustment of parameters. Com-
pleted models can be stored to and retrieved from disk through this editor.

The run-time executive provides scheduling and time management for a
heterogeneous mix of discrete-time and discrete-event components with an X-
Windows interface for starting, pausing, resuming, and stopping execution. Sup-
port for other computational paradigms, including causal, state, and qualitative
modeling, is planned for the future, and is partially the focus of this paper. Ad-
ditional future capabilities include a neuro-fuzzy machine learning component

for model adaptivity.

2.2 DASME Model Architecture

DASME provides a general black box architecture. Nodes are called “compo-
nents”, and each contains distinct input and output ports and initial state vari-
ables called “parameters”. It is also strictly hierarchical, with each component
containing a number of sub-components whose ports are accessible to the parent
and to each other, but not outside the containing component. Atomic compo-
nents are independently compiled C++ modules, and non-atomic components are
aggregates of either atomic or other aggregate components. An aggregate DASME
component is shown in Fig. 1. The children Component A and Component B may
either be atomic or themselves aggregates.

Data are passed among components in structures called “polyvalues”, which
are heterogeneous, hierarchical lists of C++ primitive data elements. For example,
float, str, (int int), and ((char float) int) are polyvalue types. Type-
checking is done at run-time.

Time values are either scalar (a relative duration), or absolute (microseconds
from January 1, 1970). Component state transitions (execution of C++ code for
atomic components, or propagation to children for aggregate components) can
be triggered by means of an elegant mixture of discrete-event and discrete-time
methods, as summarized in Table 1.

Events (component executions) are scheduled in either absolute or relative
time, and according to one of three timing modifiers. By using the NotBefore
modifier, components can schedule their own execution at the indicated time and
no other. By using the OrBefore modifier, components indicate that execution
should also occur if one or more of the component’s inputs change. By using the
PreferBefore modifier, components indicate that execution before the indicated
time (even in the absence of new inputs) is desirable. The executive is then

Temporal Modiﬁer|Method [When a component updates

NotBefore Discrete Event|At scheduled time

OrBefore Discrete Event|At scheduled time, or
if input changes

PreferBefore Discrete Time [At scheduled time, or

if input changes, or
if desired by executive

Table 1. Temporality in DASME.

a‘llowed to increase the frequency of evaluation to be no greater than a minima]
time step, as configured by the user.

.T:hIS Pra.ierBefora method adds a discrete-time modeling capability to DASME
'I“h]S i1s crucial to support components whose behaviors are best modeled as co ’
tinuous functions. For example, a component with piecewise-continuous behavinﬁ
can guarantee its evaluation at landmark points (such as inflections or disc <!
tmmt]eg), while simultaneously allowing the executive to trigger intermed'm:h
evaluations. Placing this responsibility in the executive, rather than solely ‘:r?t}?
the component itself, allows the executive to determine an appropriate trade ff
between fidelity of the simulation and its time to compute. The benefit of t};}is

approach is that thi ol i . ; .
o s configuration is achieved without having to modify the

2.3 Comparison to DEVS

EJ;SM:: Stook Subs(ta.ntial initial design inspiration from Zeigler’s powerful Discrete
ent Systems (DEVS) modeling formalism. Only a brief sum i i
here; for full details see [24, 25]. SR

Define a DEVs system as

D= (X,}/,S,t,(sintyéextsA)s (1)

where:

— X is a set of external events;

— Y is a set of outputs;

— 5 Is a set of sequential states;

= t:5 — IR* U {00} is the time advance function;

— &int: S +— S is the internal transition function;

— bext: @ X X — S is the external transition function, where

Q:={(s,¢):s€50<e<t(s)} = [J[0,1(s)] (2)
SES
1s the total state set; and

— A:§ Y is the output function.

241

These functions are interpreted as follows. Assume that D is in state s € S.
If an event r € X arrives after a duration e < 1(s), then D transits to state
§oxt((s,€) ,z). Otherwise D transits to state &in¢(s). Finally, at all times, if D is
in state s, then it produces output A(s).

It is clear that DASME components can be generally interpreted as DEVSs,
and in general that DASME has much in common with the DEVs implementation
in Scheme called DEVs-Scheme [26]. This relation is specified as follows:

— The overall hierarchical structure, including atomic and aggregate compo-
nents and input and output ports, is essentially identical.

— X and Y are the joint state spaces of the polyvalue types of the input and
output ports.

— Depending on whether the component is atomic or aggregate, S is either the
states achievable in virtue of the C++ code of the module, or recursively the
joint state spaces of the child components.

— Each component has two methods ClockMeAfter() and ClockMeAt() for
scheduling at relative and absolute times respectively. Together these deter-
mine ¢ and &in, which is the maximum elapsed time before the component
is updated; in particular, the ClockMeAfter() method establishes the sigma
variable in DEVS-Scheme.

— The NotBefore temporal modifier sets

Sext((s,€) ,2) = s, Vs € S,e € [0,1(s)],z € X, (3)

so that external events are essentially ignored.

— The OrBefore temporal modifier effectively establishes the component as a
regular DEVS. 8.y is fired if an input event occurs by the scheduled time,
otherwise 6 1s triggered.

— Each component has a Sleep() method, which calls ClockMeAt() with
End0fTime (maximal absolute time) and the OrBefore method. This sets
t(s) = 0o, so that the component will not be updated until an external event

occurs, essentially ignoring ine.

Where DASME departs from the classical DEVS formalism is in the use of the
PreferBefore modifier. It allows the model executive (basically, the DASME op-
erating environment for the highest level component of the hierarchy) to “reach
down” and intervene, triggering component updating before scheduled times,
and in the absence of any external events from within the hierarchy. It is this
facility which allows the executive to evaluate continuous functions at discrete
times. The modeler then has the flexibility to adjust evaluation step size depend-
ing on the analytical properties of the continuous functions in question, without
modifications to the model itself.

It is this capability which adds a discrete-time component, in order to bet-
ter handle continuous-time functions, to an otherwise discrete-event modeling
environment. Thus it is similar in outlook to the approach of Praehofer and his

colleagues [20, 21].

242

Another difference between DASME and the DEVS approach is at the engineey.
ing level. DEVS as a modeling methodology is a completely analytical, mathe.
matical formalism. DEVS platforms have typically been implemented in a highly
‘[:on}strained subset of a very high level artificial intelligence language like Schem,
26).

DASME’s reliance on C++ means that it can escape from the strict DEVg
formalism. For example, input DASME components can be positioned at ap
level of the hierarchy. As these rely on external inputs (from disk files or the
terminal), there can be no a priori knowledge about the possible states of these
components. Thus no purely analytical model of a DASME system is possible.

This creates an engineering tradeoff when considering DASME in the context
of the wider DEVS world. On the one hand, DASME components have a greater
flexibility, and will be generally much more efficient than implementations iy
higher level languages. But on the other hand, since DASME departs from the
formal DEVS model, verification and formal design will be more difficult.

3 Application to Model-Based Trend Analysis

The MBD approach [5] is based on the premise that knowledge about the internal
structure of a system can be useful in diagnosing its failure. In MBD, a software
model of the system, given inputs from the real system, generates and tests
various failure hypotheses.

A typical MBD approach (derived from some of the standard literature [1,
3, 4]) to diagnosing a spacecraft is shown in Fig. 2. The overall MBD system
involves two distinct spacecraft models. The Fault Generation Model (FGM) takes
inputs from telemetry, alarms (reports of departures from nominal behavior),
and errors (reports of departures from predicted behavior), and either produces
new, or modifies existing, fault hypotheses. The behavior model takes inputs
from telemetry and fault hypotheses, and outputs predictions. These are then
corroborated against telemetry to produce errors.

The fault hypotheses act to modify the behavior model so that it predicts
system behavior as if the hypothetical system components had actually failed.
If the prediction of the behavior model as modified by a particular fault hypoth-
esis produces errors, then that fault hypothesis is not retained. As the system
1s monitored over time, further observations narrow the class of viable fault hy-
potheses. Achieving the null set indicates model insufficiency. But if the overall
MBD system stabilizes to a non-empty set of fault-hypotheses, then these are
advanced as possible causes of the failure.

Model-based trend analysis is similar to MBD, but with some differences:

— Trend analysis is typically done over a longer time-frame.

— In addition to being purely diagnostic, trend analysis attempts to be predic-
tive. By diagnosing certain components to be failing or otherwise trending
in a particular direction, potential future failures can be anticipated.

— Trend analysis is especially appropriate for modeling systems where gradual
degradation leads to catastrophic failure, as is the case with batteries.

243

In the context of trend analysis, detection of a.nom‘alous compon.ent states,
even though they may not be in a failed condi.tion, is extremely 1mpmtt.ant.
Wwithin the overall model-based approach, a variety ?f methm‘ls are available
for signature matching of a time-varying telemetry signal .agamst model pre-
dictions, including statistical techniques, neuro-fuzzy adaptive approaches, and
possibilistic measurement (discussed below).

4 CAST Extensions to DASME

It is our intention to use DASME as a cAsT-based platform for m.odeling within
Code 522. While DASME is generally adherent to the DEVS paradigm, there is a
desire for DASME to support a wider range of computatlon.al models—for t?xam.ple
neural nets, finite antomata, or fuzzy rea.soning—iprosmblle. I?ASME as 1.t. exists
now already has many advantages for this effort, mcludl.ng its generality and
flexibility, but some significant enhancements will be requlred.. _

The ultimate necessary extension to DASME is the introduction of weights on
the links among the children of aggregate components. Similar to the da.ta. val-
ues passed among components, weights wi‘.!l also be PolyValues‘_These welghts
can be used generally as elements of a wide class of cgq}putatlonlal.r‘m.)de'lmg
methods, for example, weights in a neural network, COﬂdltl(?Ila.l possﬂalhtlf:s. in a
possibilistic network (discussed below), or entire fuzzy sets in a more traditional

system. .

fuzzl); c{rder to facilitate the introduction of weighted aggregates, strict data
typing of the components’ ports, and thus of the types of the llpks between
components, must be introduced. At model COBStI‘l]ICLI.On t.une, only links between
ports of equivalent types will be allowed, thus eliminating the need for model
run-time type checking and error recovery. An example of a DASME component

ith t. inks is shown in Fig. 3. ‘
Wltlfrgj e\:rie:ght. data types areb introduced for each .component. The 1n?,emal
weight type is held in common by all weights on t:he links between the chlldlren
of the component (if null, the aggregate is unwenghted).. Tl.le exterflal weight
type is the type of weight acceptable to a component on its inputs (if null, the
component need not be a child of a weighted aggregat.e). An example of a DASME
component with weighted links is shown in Fig. 4.

5 Possibilistic Qualitative Modeling

Possibility theory [2] is an alternative information theory to that based on prob-
ability. It was originally developed in the context of fuz.zy systems theory [23],
and was thus related to the kinds of cognitive modelEng that fuzzy sets are
usually used for. More recently, possibility theory is being de\’e.l(.)ped as a new
form of mathematical information theory complementing probability theory [12].
The details of mathematical possibility theory will not‘be introduced here (se:;
[9, 10]), but will be described only very cursorily, and its role as a QM metho

briefly outlined.

244

5.1 Possibility Theory

A possibility distribution over a given space or set {2 is similar to a probability
distribution, but whereas a probability distribution p is additive,

/ﬂdp(w) =1; Z p(w) =1, (4)

wefnl
in the continuous and discrete cases respectively, 7 1s “maxitive”

V mw) =1, (5)

sup m(w) =1,
wen

in the continuous and discrete cases, where V is the maximum operator. Similarly,
a possibility measure IT based on 7 is maxitive, in that

VA,BC 2, II(AUB)=I(A)V II(B). (6)

© Superficially, possibility theory is broadly similar to probability theory with
(4, x) algebra replaced by (v, N) algebra, where M is a t-norm function: a mono-
tonic, associative, commutative operator with identity 1. The minimum operator
A and x are both t-norms, but there are many others. Concepts of marginal,
joint, and conditional possibility have all been defined, as have possibilistic cor-
relates to stochastic entropy, called nonspecificities.

Although possibility theory is logically independent of probability theory,
they are related: both arise in Dempster-Shafer evidence theory as fuzzy mea-
sures defined on random sets; and their distributions are both fuzzy sets. So
possibility theory is a component of a GIT, which includes all of these fields
[9, 16, 17].

But at a semantic level, probability and possibility are radically different.
Probability represents division of knowledge among a distinct set of point out-
comes. Possibility, on the other hand, is inherently non-additive. Possibility rep-
resents coherence of knowledge around a central core of certainty: the region on
which 7(w) = 1, which is guaranteed to be non-empty by normalization.

And so while probability is related to dispersive concepts like frequency,
chance, and likelihood, possibility is related to ordinal concepts like capacity,
ease of attainment, distance, and similarity. Furthermore, unlike probability,
possibility places very weak constraints on the representation of information:
the maximum relation is a very weak operator, and there is a choice of many
norms to use, some of which are strong, and others of which, like V, are also
weak.

So possibilistic models are appropriate where stochastic concepts and meth-
ods are inappropriate, including situations where long-run frequencies are diffi-
cult if not impossible to obtain, or where small sample sizes prevail. This is true,
for example, in trend-analysis, where even though observations are made over a
long time, the trending state variables of concern change only very slowly, and
new domains of behavior are only very rarely seen. In these cases the weakness
of the possibilistic representation is matched by the weak evidence available.

245

Mathematical possibility, in both theory and applications, is still in the basic
research phase, just out of its infancy. For example, the axiomatic basis for possi-
bility theory and the properties of possibility distributions on continuous spaces
are still being defined, and the semantics of possibility in physical systems has
been considered only by very few. Joslyn is developing mathématical possibil-
ity theory on the basis of consistent random sets, general possibilistic modeling
methods (including possibilistic measurement and interpretation procedures),
and an empirical semantics for possibility [9].

5.2 Possibility Theory for Qualitative Modeling

There are many reasons why it can be expected that possibility theory can come
to play an important role in QM in general, and in the application of QM to MBD
in particular. Two of the most important reasons for this are that possibility
theory is the appropriate and direct generalization of two of the key methods
used in QM: interval analysis and nondeterministic processes.

Interval analysis [19], and in particular interval-valued processes [18], are
an important component of general QM methodology. A crisp real interval I =
[¢,8] C IR can be represented by its characteristic function x7: IR ~— {0, 1}, where

u={ 28] 7

y1 is a special kind of possibility distribution called “crisp”, where Yw € £2, n(w) €
{0, 1}. Generalizing (7) from {0, 1} to [0, 1], and keeping some simple convexity
requirements, results in “fuzzy intervals” or “fuzzy numbers”. Fuzzy arithmetic
[14] defines mathematical operations such as addition and multiplication on fuzzy
intervals and numbers, and directly generalizes interval arithmetic. Probability
theory, on the other hand, does not.

A non-deterministic process [6] can be characterized by its transition network.
Each state w € {2 can transit to any number of other states. If the value 1 is
assigned to a possible transition, and 0 to one which is not allowed, then a
boolean n x n transition matrix can be constructed, where n := |£2|. Given an
initial state w; € 2, then future states are represented as subsets o(w;) C £2.

Similarly, nondeterministic processes generalize to possibilistic Markov pro-
cesses in a way which is much more natural than stochastic Markov processes.
Possibilistic processes provide an ideal medium for causal modeling using a
graduated, nondeterministic representation of causal relatedness. The transi-
tion graph of a possibilistic process can essentially be regarded as a possibilistic
network, similar to Bayesian networks in stochastic systems theory.

An example is shown in Fig. 5 for 2 = {z,y, z}. The arcs indicate possible
state transitions, each of which is non-additively weighted with the conditional
possibility of the transition. This results in the possibilistic transition matrix

0.0 08 0.0
II=|[10 00 00]. (8)
02 1.0 1.0

P V]

Each column of IT plays the role of o(w) in a nondeterministic process. Given ay
initial state possibility distribution, future possibilistic states are calculated by
(V,N) matrix composition. Joslyn has also developed possibilistic Monte Carlg
methods [9], which are required to select a specific final outcome given a possj.
bility distribution on the state variables of the process at any given time.

6 Possibilistic Modeling with CAST-Extended DASME

We intend to use cAsT-extended DASME in a number of different ways to support
qualitative model-based trend analysis of spacecraft.

6.1 Data Analysis

The most immediate application of DASME to possibilistic modeling, even before
the addition of weighted links, is the development of possibilistic representationg
of telemetry through possibilistic measurement procedures [7, 8]. The essentia]
requirement is the collection of the frequency of occurrence m(A;) of subsets or
intervals A; C £, yielding what is called an “empirical random set” [15]. If any
of the observed intervals are overlapping, then such a representation cannot be
reduced to a traditional point-valued random variable, and thus no traditiona]
point-valued probability distribution can be forthcoming [13]. If the core of the
observed intervals is nonempty, so that N; Aj # 0, then

(W) =) m(4;). (9)

Ajdw

is an empirical possibility distribution, called a possibilistic histogram, with the
same core.

An example is shown in Fig. 6. On the left, four observed intervals are shown.
The bottom two occur with frequency 1/2, while each of the upper two have fre-
quency 1/4. Together they determine an empirical random set. The step function
on the right is the possibilistic histogram derived from (9).

There are a variety of well-justified continuous approximations to a possi-
bilistic histogram. Two examples are shown in the figure. The rising diagonal on
the left is common to both. The two falling continuous curves on the right are
distinct to each. The trapezoidal form marked 7* is one of the most commonly
used continuous approximations, but it must be noted that this is only one pos-
sibility among many, including smooth curves. This approach to possibilistic
measurement generalizes to n intervals and to the continuous case.

So possibilistic measurement is distinguished from measurement in probabil-
ity theory by its reliance on interval-based observations. There are a number of
different ways in which intervals result from measurement [9]. The method of
most immediate interest for spacecraft modeling derives from local extrema of a
telemetry stream.

A simple example is shown in Fig. 7. Given a time-varying telemetry signal,
zach time the curve turns marks a local extrema. The segments of the ordinate

1

247

between these local extrema produce a statistical collection of intervals, and thus
an empirical random set and possibilistic histogram. It should be noted that
this method is sensitive to noise, since each non-signal fluctuation generates two
spurious local extrema, and thus interrupts the “real” interval being observed.
In the context of trend analysis, possibilistic histograms of telemetry promise
to provide a novel and significant new representation of the long-term trending
of the data. The core is the central region of purely nominal behavior, while the
support (the larger region on which the possibility distribution is positive at all)
represents the domain of observed behavior, and is thus similar to a concept
of a “yellow limit”. Comparison, through possibilistic distance measures [22],
between possibilistic histograms at different times reveals trending information.
The data path for possibilistic measurement in DASME is shown in Fig. 8.
Each node indicates a different DASME component. In the context of spacecraft
gystems modeling, measurements are typically desired of such variables as volt-
ages and temperatures. The noisy telemetry signal requires smoothing. Intervals
are typically observed between orbital periods, yielding one data interval ap-
proximately every 45 minutes. Data sets on the order of months are required.

6.2 Systems Modeling

Finally, casT-extended DASME provides a rich modeling environment within
which to implement possibilistic causal network models. Fig. 9 shows how the
three-state possibilistic process shown in Fig. 5 would be implemented in a cAsT-
extended aggregate DASME component.

The three inputs to the component represent the initial possibility values of
the three automata states, each of which in turn is represented by the three child
components. These are atomic components, which take the initial possibility
value as input, and calculate the current possibility value as output. They also
take as input the values of any other state which can transition to them, that
is, which have a non-zero conditional possibility.

The internal data type of the weights on the links between the components
are called fits, for “fuzzy digit”, a float in [0,1]. The weights represent the
conditional possibility of transition between states, and together comprise IT.
The external weight type is null, indicating that the whole possibilistic process
does not participate in a higher level systems model. Finally, the aggregate
process component outputs the current possibility value of each state.

References

1. Davis, R and Hamscher, W: (1992) “Model-Based Reasoning: Troubleshooting”,
in: Readings in Model-Based Diagnosis, ed. W Hamscher et al., pp. 3-24, Morgan
Kaufman, San Mateo CA

2. Dubois, Didier and Prade, Henri: (1988) Possibility Theory, Plenum Press, New
York

3. Dvorak, D and Kuipers, B: (1992) “Model-Based Monitoring of Dynamic Sys-
tems”, in: Readings in Model- Based Diagnosis, ed. W Hamscher et al., pp. 249-254,
Morgan-Kaufmann, San Mateo CA ¥

248

l. Hall, Gardiner A; Schuetzle, James; and La Vallee, D et al.: (1992) “Architectura]
Development of Real-Time Fault Diagnositc Systems Using Model-Based Reason-
ing”, in: Proc. 1992 Goddard Conf. on Space Applications of Al, ed. Steve Rash,
pp. 77-86, NASA Goddard, Greenbelt MD

. Hamscher, W; Console, Luca; and Kleer, Johan de, eds.: (1992) Readings in Model.
Based Diagnosis, Morgan-Kaufman)

- Hopcroft, John E and Ullman, Jeffery D: (1979) Introduction to Automata Theory
Languages and Computation, Addison-Wesley, Reading MA

. Joslyn, CLff: (1992) “Possibilistic Measurement and Set Statistics”, in: Proc.
NAFIPS 1992, v. 2, pp. 458-467, Puerto Vallerta

- Joslyn, Cliff: (1993) “Some New Results on Possibilistic Measurement”, in: Proc.
NAFIPS 1993, pp. 227-231, Allentown PA

- Joslyn, Cliff: (1994) Possibilistic Processes for Complex Systems Modeling, PhD
Dissertation, Binghamton University, UMI Disseration Services, Ann Arbor MI

. Joslyn, CIiff: (1994) “Possibilistic Approach to Qualitative Model-Based Diagno-
sis”, Telematics and Informatics, v. 11:4, pp. 365-384

. Joslyn, Cliff: (1995) “An Object-Oriented Architecture for Possibilistic Models”,
in: Proc. 199 Conf. Computer-Aided Systems Technology, to appear

- Joslyn, Cliff: (1995) “Towards an Independent Possibility Theory with an Objective
Semantics”, in: Proc. 1995 Int. Workshop on Foundations and Applications of
Possibility Theory, to appear
Joslyn, CIff: (1995) “Strong Probabilistic Compatibility of Possibilistic His-
tograms”, in: Proc. 1995 Int. Symposium on Uncertainty Modeling and Analysis,
to appear
Kaufmann, A. and Gupta, M.M.: (1985) Introduction to Fuzzy Arithmetic, Rein-
hold, New York
Kendall, DG: (1974) “Foundations of a Theory of Random Sets”, in: Stochastic
Geometry, ed. EF Harding and DG Kendall, pp. 322-376, Wiley, New York
Klir, George: (1993) “Developments in Uncertainty Based Information®, in: Ad-
vances in Computers, v. 36, ed. M. Yovitz, pp- 255-332, Academic Press
Klir, George and Yuan, Bo: (1995) Fuzzy Sets and Fuzzy Logic, Prentice-Hall, New
York
Kuipers, BI: (1994) Qualitative Reasoning: Modeling and Simulation with Incom-
plete Knowledge, MIT Press, Cambridge MA
Moore, RM: (1979) Methods and Applications of Interval Analysis,in: SIAM Stud-
ies in Applied Mathematics, SIAM, Philadelphia
Prachofer, Herbert: (1991) “Systems Theoretic Formalisms for Combined Discrete-
Continuous Systems Simulation”, Int. J. of General Systems, v. 19, pp. 219-240
Prachofer, Herbert and Zeigler, Bernard P: (1995) Automatic Abstraction of Event-
Based Control Models, in preparation
Ramer, Arthur: (1990) “Structure of Possibilistic Information Metrics and Dis-
tances: Properties”, Int. J. of General Systems, v. 17, pp. 21-32
Zadeh, Lotfi A: (1978) “Fuzzy Sets as the Basis for a Theory of Possibility”, Fuzzy
Sets and Systems, v. 1, pp. 3-28
Zeigler, BP: (1976) Theory of Modeling and Simulation, Wiley, New York
Zeigler, BP: (1985) Multifacetted Modeling and Discrete Event Simulation, Aca-
demic Press, San Diego
Zeigler, BP: (1990) Object-Oriented Simulation with Hierarchical Modular Models,
Academic Press, San Diego

249

==

|PaTanstar

Fig. 1. An aggregate DASME component.

Spacecraft
System —(Sensort’,)
Telemetry
MED System~ [~~~ T~ T~~~ T~ T~ S" E : i
I Al ymptom
! i Detector
I Fault Generation
I Model
| Error
| Model Errors Détisctor
|
I Fault Hypotheses
! Behavior Predictions
! Model
|

Fig. 2. A typical model-based diagnostic system.

250

==

+

wibconponent [peranstar

Va

vortax [conectar

Farent B

float

Inpk 1

Inpt 2
int

Conpanent. B

Output 1.
fint str)

| Parant Qutput -3

Parent. Qutput 1>

{int str)

{* {ipt int))

Fig. 3. A DASME component with typed links.

Dl
Lt)

=3

subconponent [peTasetar [vertax joonestar

INTERNAL WEIGHT:float
EXTERNAL WEIGHTpull

5

float

|1 Parent.

Parent B
float Conponent B
Jopk X Outpur 1 Parent Cutput >
Dnte.2 (int str) {int str)
int
o Parant. Output
= fine Ineyy i

Fig. 4. A DASME component with weighted links,

P 1

Fig. 5. Weighted state transition diagram for a possibilistic Markov process.

m(w)
g e e = | ct 1.00+4 T
F + t T < CS 75+
p——f=oy e SRR - B D
by : : ¢t 25
1 L 1 1 1 1
0 1 3 3 4 5 l*—fg ’ : ’ ’
C(m)
—om

Fig. 6. (Left) Four example observed intervals. (Right) The possibilistic his-
togram and two continuous approximations.

Ty
5
4
3
m(z)

2 1-I. EEERES

51
1 5+ ——0 o—

25+ —O

t 1 2 3 4 5 =z

Fig. 7. Observed intervals and resulting possibilistic histogram from local ex-
trema.

252
Telemetry Acquisition
Smoothing
Stream of Intervals (Local Extrema)
Discrete Random Set on IR
Possibilistic Histogram

Continuous Envelope

Fig. 8. Possibilistic measurement in DASME.

Fig. 9. A possibilistic process implemented in a CAST-extended DASME component,

Sears B ki
2 Inlttalss — H
T T o ':’D”
0.2 -0 5
State C 1
| Inak € \\
N Tritial -
INTERNA y f Piremeit 1 ;
L WEIGHT: ic ‘——{Traneib: 2y x Stote S Duepa € >
EXTERNAL WEIGHT: null C TR
1.0
e e e ¥
i e RS R T |

Symbolic Computing Aided Design of
Nonlinear PID Controllers

Jestis Rodriguez-Millén and Juan Cardillo
Universidad de Los Andes - Facultad de Ingenieria
Escuela de Sistemas - Dept. de Sistemas de Control
Apartado 11 - La Hechicera, Mérida 5251-A, VENEZUELA
Fax: 58-74-402846, E-mail: jrmillan@ing.ula.ve

Abstract. In this paper we introduce a symbolic computing tool, denoted by NLPID in the
sequel, for the automatic design of linear and nonlinear PID controllers for nth order nonlinear
control systems. The nonlinear design algorithm is based upon Rugh's Extended Linearization
Technigue, and it was implemented using Mathematica® as symbolic compulting platform. At its
present stage of development NLPID uses Ziegler-Nichols tables to synthesize linear PID

controllers, and therefore its ability to deal with first and second order plants could be limited.

Keywords: Nonlinear PID Controllers, Jacobian and Extended Linearization, Symbolic

Computing.

Contents

1. Introduction

2. The Jacobian Linearization Method
3. The Extended Linearization Method
4, Linear PID Controllers

5. Nonlinear PID Controllers

6. Functional Description of NLPID
7. Examples

8. Discussion

1 Introduction

NonLinear Control Systems (NLCS) are dynamical systems defined through (i) a state equation, i.e., an

ordinary differential equation:

