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Abstract 
We suggest an empirical measuring procedure which yields data governed by possibility the- 

ory. Such methods are needed in order to successfully apply possibility theory to the study of 
physical systems. Set-based statistics are used to generate empirically derived random sets. Nor- 
mal possibility distributions are available for all consistent random sets, and a set of “consistent 
transformations” are available for all inconsistent random sets. The Principle of Uncertainty 
Invariance is used in a modified form to select the consistent transformation with minimal 
information loss from the original random set. 

1 Possibilist ic Models 

In a previous work [8], Joslyn considered the need for an empirically based semantics for possibility 
measures and distributions. Traditional methods for obtaining fuzzy set membership and possibility 
values may be sufficient for human-controlled, knowledge-based applications (such as control and 
expert systems), but an empirical approach will be needed if possibility theory is to be successfully 
applied to  such “non-traditional’’ areas as the modeling of complex physical systems. 

A model of a physical system, in the most general sense, requires data provided by measure- 
ments. Such measurements provide a semantic relation between the model and its object, or ref- 
erent. Measured input data serve to  initialize the model; while generated output data corroborate 
the model against further measurements. 

In a stochastic model, input and output data are governed by probability theory. Measured data 
are converted to frequency distributions with an additive measure, and are thereafter considered as 
probability distributions. Monte Carlo methods are then used to  generate output data according 
to probability distributions inherent to the model. 

In a fuzzy or possibilistic model, data are governed by possibility distributions and possibilistic 
reasoning methods. While the semantics of probabilistic reasoning is based on the notions of 
likelihood, chance, tendency, propensity, frequency, and the like, the semantics of possibilistic 
reasoning derives from notions such as similarity, resemblance, elasticity, intensity, and degree of 
ease [15]. In this paper we suggest a measurement procedure to generate possibility distributions 
from non-frequency data. 
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2 Mathematical Preliminaries 

First, let us overview the standard evidence theory. For a finite universe R = {U;}, 1 5 i 5 n 
with power set P ( R )  = { A  C O},m:P(SZ) H [0,1] is an evidence function on the subsets of R 
with m(8) = 0 and CAcn m ( A )  = 1. Denote a random set generated from an evidence function as 
S = {( A j , m j )  : mj > 0}, where ( e )  is a vector, Aj c R , m j  = m(Aj), and 1 5 j 5 IS1 5 2n - 1. 
We also have the focal set F = { A j  : mj > 0). Then the dual belief and plausibility measures on 
an A c R are 

Bel(A) = mj = 1 - Pl(A) 
A, C A  

Pl(A) = mj = 1 -Bel(A). 
A,nA#Q 

Following [8], we denote the “plausibility assignment” of a random set S as Fl = (Pl({u;})) = 

Klir and Ramer [la,  141 identify two complementary uncertainty measures on random sets. The 
(PI;) .  

first is the discord, 

which measures the ambiguity in terms of the amount of discrepancy among the evidential claims 
mj. The second is the nonspecificity, 

IS I 

j = 1  

which measures the “spread” of the evidence. The total uncertainty of a random set is then given 
by 

T(S)  = D(S) + N ( S ) .  ( 5 )  
There are a number of special cases depending on the structure of F. When V j ,  lAjl = 1, then 

S is specific. We have IS1 = n,  and Bel(Aj) = Pl(Aj) = Pr(Aj) 
distribution l?l = p’= ( pi ) = ( Pr({u;}) ) = ( mi ) and normalization 
measures then are 

n 

D(S) = H(S) = - C p i l o g 2 ( ~ i ) ,  
i=l 

N ( S )  = 0, 

where H is the stochastic entropy. 

is a probability measure with 
Cr=lpp; = 1. The information 

S is consonant (F is a nest) when (without loss of generality for ordering, and letting A0 = 0) 
A j - 1  C Aj .  As with the probabilistic case, IS1 = n, but Pl(Aj) = II(Aj) is a possibility measure. 
Denoting A; = { q , w 2 , .  . . ,w i } ,  and assuming that S is complete (i.e. Vui E R,3A;), then the 
possibility distribution is Fl = 5 = (ri ) = (II({u;})) = ( m k )  with normalization V z 1  T i  = 
1, where V is maximization. For information measures, letting ~ ~ + 1  = 0, we have [5 ] :  
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k(k - 1) I n-1 

= - C(T;-K;+l) log,  l - i  - 
i= 1 

i 
= 2 7T;log, [-] = 2(7T; - 7rz+l)log2(i). 

i = 2  i -  1 Z=l 

(9) 

It has been established [5] that the maximum values for D(S) for possibility measures is bounded 
from above, and the actual upper bound (for IS( --+ CO) is approximately 0.892. Hence, possibility 
measures are almost discord free; their discord may often be neglected, especially when IS1 is large. 

3 Traditional Measurement Procedures 

Data-gathering in fuzzy modeling has been dominated by two kinds of methods. 

3.1 Opinion-Based Methods 

There are various means by which possibility or fuzzy membership values are derived from the opin- 
ions of people. Sometimes researchers assume certain distributions based on theoretical, method- 
ological, or other ad hoc considerations which are outside of the model per se, e.g. [7]. Sometimes 
people who have expert knowledge of the modeled system are polled to  provide their opinions of 
the values of the possibility of the various w E R,  e.g. [13]. 

No doubt there are situations in which such methods are either necessary or completely suf- 
ficient. For example, these methods are natural and useful when people control and intervene in 
system operation, and so psychological disposition is a serious factor. In other circumstances, there 
is a good theory of the system being modeled and little or no access to  physical measurement. But 
these methods are unsatisfactory at  best for the modeling of physical systems or other systems in 
which individuals do not provide direct input. Where possible, fuzzy data should be derived from 
physical measurement. 

3.2 Converted Frequencies 

In stochastic models, observations are made of the occurrence of one or another outcome w;. De- 
noting that count of these occurences as e; ,  then for a given total count of M ,  we can arrive at a 
frequency distribution f :  Q H [0,1], f ( w ; )  = f; = $. Denoted as a vector, f = ( fi ) is a natural 
probability distribution with normalization f; = 1 and additive measure F :  P(R)  H [0,1], 
given by the formula VA C 0, F ( A )  = CwtEA f;. 

A variety of methods are available which convert an observed frequency distribution f to a 
possibility distribution ii [2, lo]. But there can be no doubt that f i s  in fact a natural probability 
distribution. There may be a goodconversion f+ ii, and surely such a transformation must be used 
when only frequency data are available. But the representation n' is never ultimately appropriate 
for the data gathered by a frequency distribution fi It is preferable to obtain data in a form more 
directly similar to the ultimate possibilistic representation. 
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4 Set-Based Statistics 

The method begins with the use of set-based statistics [3, 171. Instead of counting outcomes of the 
w E 0, outcomes of subsets A c R are counted. An observation of a subset A c R indicates an 
event somewhere in A .  Thus whenever IAl > 1, the observation is somewhat non-specific. 

We note that while researchers strive to achieve specific observations, and are frequently suc- 
cessful, nevertheless subset observations are in fact quite normal. In particular, subset observations 
result whenever the sensitivity of an instrument results in the recording of a range, or error-bars 
attached to  a point measurement. Subset observations also result whenever an observation is made 
from a continuous scale; and may result from observations on a discrete scale with a high resolution. 

Denote the count of a subset A by C A .  Then a frequency function on subsets can be constructed 
as f" :P(R)  H [0,1], with f" (Aj)  = ff = &+. p is a natural evidence function generating an 
empirically derived random set denoted as S E  with focal set 3E. When SE is specific, p = 
f When S E  is consonant and appropriately ordered, then = n, and 5' = (Pl({w;})) = 
( C;Z"=; fp ) is a possibility distribution with normalization V Z 1  iri = 1. 

5 Consonance, Consistency, and Inclusion 

Given an empirically derived random set S E ,  we are now concerned with its plausibility assignment 
f l ,  and in deriving an empirical possibility distribution ii based on it. It is clear that SE being 
specific is necessary and sufficient for fi being stochastically normal P1, = l), and thus 
a probability distribution. But SE being consonant is not necessary for g l  to  be a possibility 
distribution. The following is adapted from Dubois and Prade [4]. 

Definition 1 (Core) The core C ( S )  of a random set S is nF A,. 

Definition 2 (Random Set Consistency) A random set is consistent when C(S) # 8. 

Since w, E C ( S )  -+ VA,, {U,} n A, # 8 i Pl({w,}) = 1, random set consistency entails that f l  is a 
possibility distribution. On the other hand, if €!I is a possibility distribution, then 3w,,Pl({w,}) = 

is random set consistency, not consonance, which is necessary and sufficient for $1 to be a possibility 
distribution f. 

Each possibility distribution ii determines a possibility measure 11 and thus a consonant random 
set denoted S". If SE is consistent but not consonant, then while g l  = f and Vr=lFl = 1, still 
3A1, A2, Pl(A1 U A2) # P1(A1) V Pl(A2). Thus in this case S E  # S", and the original random set 
S E  cannot be constructed simply from knowledge of the distribution ii. 

1 = CwtEA, m,. Since IS I m3 = 1, therefore VA, E 3 , w ,  E A, ,  and S is consistent. Therefore it 

However, we have the following result, again from [4]. 

Definition 3 (Weak Random Set Inclusion) A random set S1 is weakly included in SZ~ de- 
noted S1 C, S 2 ,  when VA c R,  Pll(A) < Pl2(A). 

Definition 4 (Optimal Weak Inclusion) A random set S1 is optimally weakly included in S2, 

denoted S1 C; S 2  when SI C, S:! and S1 is the maximal such random set with respect to the partial 
ordering c,. 
Theorem 1 If S E  is consistent, then S" C; S E .  

Thus, for a consistent, non-consonant SE, we know that g l  is a possibility distribution, and that 
the reconstructed random set S" is an optimal approximation to SE according to this measure. 
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6 Consistent Transformations 

In a consistent random set, all the evidential claims are in partial agreement, since they all include 
the core. If .F is a nest, then C ( S )  = A1 E F. Therefore a consistent random set is in some sense 
a “partial” nest, and it is appropriate t o  consider possibility distributions which approximate S E .  

But when S E  is not even consistent, then it is less clear what its good possibilistic approxima- 
tions might be. However, S E  will need to  be modified from its given form, and in a way which 
distorts the original structure as little as possible. We begin with the following definitions: 

Definition 5 (Consistent Transformation) A consistent transformation of a random set S ,  
denoted S H S, moves some evidential claims ( A ,  m ) E S to A E 3 such that A C A. 

Since A C A, all the evidence of the old claim is accounted for in the new claim A. We also have 
that S C, 3, and N ( S )  5 N ( 3 ) .  However, sometimes D(S) 5 D(S), and sometimes D(S) 2 D(S). 

Definition 6 (Focused Consistent Transformations) A consistent transformation focused on 
U; E 0 of a random set S ,  denoted S H S i ,  moves VAj E 3 the evidence mj from Aj to Aj U {w;} E 
3 2 .  

There is a family of n random sets 6;, one for each wi E R.  The effect of each is to “focus” the 
evidential claims in S onto the element wi. If w; 4 A ,  then m ( A )  becomes zero while the evidence 
for A is added to  the evidence of the “promoted” subset A U {w;}; whereas if w; E A ,  then it is 
unchanged. Now since V A  E 3; ,~ ;  E A,  therefore all the 3; are consistent with normal possibility 
distributions, and generating consonant random sets denoted 37. 
Theorem 2 S H S; induces the transformation: 

Fl=(P11,P% ,..., Pk ,.”, P ~ ) l + i i = ( P 1 1 , P l 2  ,..., 1 ,..., P L )  

Proof: Let i be fixed; let A E F, A E 3;; let m, P1 and k,s be the evidence functions and 
plausibilities h of S and Sz respectively; and let ii be the possibility distribution of 3;. First, we know 
that x; = Pl({w;}) = m(A)  = CAETm(A)  = 1. Now consider Vk # i ,  1 5 k 5 n,  and any 
A0 E F. Case 1: If U; E Ao, then m(A0) 1s unchanged in the transformation. Case 2: Assume 
w; $! Ao. If Wk E Ao, then U k  E A0 U {w;}; as m(A0) is added to Plk, so k ( A 0  U { U ; } )  is added to 
s k .  Similarly, if Wk e A O ,  then Wk 6 U {w;}; as m(A0) is not added to  Plk, so 7 i 2 ( ~ ~  U { w ; } )  
is not added to  g k .  Therefore the transformation does not change the value of Pl({wk}), and 

h 

xk = P1k = Plk. 

7 Principles of Reasoning with Uncertainty 

Three principles based on relevant measures of uncertainty are fundamental to reasoning under 
uncertainty [ll]. These are the principles of Minimum Uncertainty, Maximum Uncertainty, and 
Uncertainty Invariance. 

Principle of Minimum Uncertainty: This is an arbitration principle, which helps us to choose 
solutions in simplification or approximation problems that involve uncertainty. This principle 
requires that we accept only those solutions, from among all otherwise acceptable solutions, 
whose uncertainty (pertaining to the purpose involved) is minimal. By using this principle, 
we accomplish a desired simplification or approximation by loosing the least possible amount 
of information. 
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Principle of Maximum Uncertainty: This principle helps us to  properly extrapolate beyond 
the information available. The principle requires that any extrapolation be obtained by 
maximizing relevant uncertainty within the constraints expressing the available information. 
This principle guarantees that our extrapolations are maximally noncommittal with regard 
to missing information. 

Principle of Uncertainty Invariance: This principle attempts to establish connections among 
representations of uncertainty in alternative mathematical theories. It requires that the 
amount of uncertainty be preserved when we transfer uncertainty formalized in one math- 
ematical theory into an equivalent formalization in another theory. That is, the principle 
guarantees that no information is unwittingly added or eliminated solely by changing the 
mathematical framework in which a problem is formalized. 

In the context of probabilistic systems, the Principle of Maximum Uncertainty has had wide 
application as the Principle of Maximum Entropy [16]; and both the maximum and minimum 
entropy principles have been developed extensively by Christensen [ 11. 

8 Minimal Information Loss 

In the present situation, we are interested in transforming evidence represented by the random set 
SE to a consonant random set S" determined by a possibility distribution n' derived from SE.  In 
this context, then, we want to  apply the Principle of Uncertainty Invariance to derive a ii with 
uncertainty equal to that of the original random set. 

We can state the manifestation of the Principle of Uncertainty Invariance in this context as: 

Principle 1 Given an empirically derived random set S E ,  let S" be that focused, consistently 
transformed possibilistic approximation Sr such that T(SE) = T(S7). 

However, Principle 1 cannot be used in this form. As the Principle of Uncertainty Invariance 
was originally introduced [9], one side of the transformation was considered to  be completely con- 
strained, while the other was constrained only by the measure of uncertainty. For example, for 
a given, fixed probability distribution, the researcher is free to select any possibility distribution 
with equal uncertainty. Later results [6] require specific transformation methods because of their 
desirable properties, but still the transformed distribution could range over a continuous parameter 
a E ( 0 ,  l), and it was shown that 3a E ( 0 , l )  such that uncertainty invariance could be satisfied. 

But in the present context, the set of possibilistic approximations {ST} provide only a finite 
set of candidates from which the optimal consonant random set S" must be selected. Further, 
it may very well be the case that jfSr,T($) = T(SE). We know that V i , N ( S E )  < N ( S q ) ,  but 
such a relation does not necessarily hold for D, and therefore also not for T. In general, there will 
be a tradeoff when S E  is transformed to sr, with the discord of S E  being transformed into the 
nonspecificity of the $. But the conditions under which T(2$) increases or decreases from T(SE) 
have yet to be investigated. 

Therefore, we must adopt the following modification of Principle 1 in this finite case: 

Principle 2 (Minimal Information Loss) Given an empirically derived random set SE, let S" 
be that focused, consistently transformed possibilistic approximation Sr such that T ( S E )  is as 
W O S ~ ' ~  to T (Sr )  as possible. 
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It is clear that we require an “information loss” function L(&,S:!) with L(S1,Sp) = 0 t-f T(S1) = 
T(&), and then to  select that for which L(SE,Sr) is a minimum. An obvious candidate is 
L(&,S:!) = IT(&) - T(SZ)I, but this might not always be satisfactory. 

Choice of a loss function will depend on the methodology of the investigator. If T(SE) < 
T(SP), then “extra” information is gained through the transformation that was not included in 
the data. On the other hand, if T(SE) > T(@), then information in the data is lost through the 
transformation. In general it should be considered more dangerous to  add spurious information 
than to excise given information, but a very great loss should not be chosen over a very small gain. 
One can imagine a more sophisticated loss function which would smoothly provide more weight to 
information loss than information gain. 
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