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Based on a black box model of a complex system, and on intervals and probabilities describing the known
information about the inputs, we want to estimate the system’s reliability. This problem is motivated by a
number of problem areas, most specifically in engineering reliability analysis under conditions of poor
measurement and high complexity of system models. Using the results of tests performed on the system’s
computer model, we can estimate the lower and upper bounds of the probability that the system is in a
desirable state. This is equivalent to using Monte-Carlo sampling to estimate cumulative belief and
plausibility values of functionally propagated finite random intervals. In this paper, we prove that these
estimates are correct in the sense that under reasonable assumptions, these estimates converge to the
actual probability bounds.
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1. Introduction

In this paper, we consider the problem of modeling the risk and reliability of complex

technical system. The behavior of this system is determined by the values of the

corresponding parameters x ¼ kx ð1Þ; x ð2Þ; . . .; x ðnÞl; for example, for a nuclear reactor, these

characteristics could include the thickness of the walls, the locations of the radiation

absorbers, etc. For each combination, x of these parameters, the system exhibits certain

characteristics y ¼ k y ð1Þ; y ð2Þ; . . .; y ðmÞl; e.g. for a nuclear reactor, the list of such

characteristics include neutron flux, temperature, etc.

We assume that the parameters set is complete (or almost complete), so that the observed

state is uniquely determined by the values x of the parameters, so that y ¼ f ðxÞ for some

function f. In this context, f acts as a model of our knowledge of the system.
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The reliability of such a system is related to the fact that some states y are desirable, while

some other states are not. Thus we’ll be concerned with the conditions under which the

system output occurs within some desirable output set B0.

If we knew the exact values of the parameters x (i), then we would be able to determine the

corresponding state y ¼ f ðxÞ and check whether it is desirable, f ðxÞ [ B0; or not. But in real

life, we usually do not know the exact values of x (i). Instead, in some instances we may know

a lower bound xðiÞ and the upper bound xðiÞ that are known to contain x (i). Often, we do not

know how more or how less probable are different values within this interval, i.e. what is an

actual probability distribution for x (i) within this interval.

In some cases, instead of a single interval, several experts provide different intervals

corresponding to different possible situations. Then, in addition to these intervals, we usually also

know the probability of each such situation. For example, a reactor shell can come from three

differentmanufacturing plants, and we know the frequencies with which they come from different

plants, i.e. the probabilities that a randomly selected shell is from this particular plant. For each

plant, we also know the interval of possible value of thickness for shells produced by this plant.

Furthermore, systems of interest are characterized by a high complexity such that these

models f are large simulation codes. These codes are sometimes so huge that each run

requires days on supercomputers. As a result, we cannot typically control what inputs we

feed into the code, but have to reply on the results of the testing, i.e. on some pairs

{kx1; y1l; kx2; y2l; . . .kxM ; yMl} corresponding to these actual test runs.

Given such information, what can you know about the probability P that the resulting state

is desirable? If we knew the joint probability distribution of the parameters, then we could

determine the probability of different values of y and thus we could get the probability

Pr ð f ðxÞ [ B0Þ: In reality, we only have partial information about the probability

distributions. For different distributions, we may get different values of P. Our goal is,

therefore, to find the interval P ¼ P;P
� �

of possible values of this probability P.

In this paper, we develop the methodology of this problem formulation under conditions of

only sampling information from f(x), and determine convergence conditions for both the

upper and lower value of this probability interval.

This class of problems is quite realistic in certain engineering modeling contexts, and was

the recent focus of a major interdisciplinary research effort among the engineering modeling,

risk analysis and generalized information theoretical and imprecise probability communities

[2,7,11]. Most specifically, this can be understood as the problem of propagating a finite

random interval [8] through the model f. Monte-Carlo sampling approaches to such random

interval sampling are in development [5,6,9], and this work stands to assist that effort in

providing a rigorous formulation of some of the required convergence results.

2. Probability intervals on input information

We begin by introducing our basic mathematical constructs, characterizing the uncertainty

structures on the inputs, and demonstrating the resulting probability intervals.

2.1 Input information

Let R be the real numbers, and N :¼ {1; 2; . . .};Nn :¼ {1; 2; . . .; n}: Assume integers

n;m [ N where n is the number of inputs and m the number of outputs, and let f : Rn 7! Rm:
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Let the ith input be denoted x (i), taking values on a set X ðiÞ ¼ R; for i [ Nn: Similarly,

let the lth output be denoted y (l), taking values on a set Y ðlÞ ¼ R; for l [ Nm: Let x :¼

kx ð1Þ; x ð2Þ; . . .; x ðnÞl [ Rn be called input points and y :¼ ky ð1Þ; y ð2Þ; . . .; y ðmÞl [ Rm be called

states.

Let X and Y be the sets of closed, rectangular boxes in Rn and Rm; respectively, and

generically, let A [ X;B [ Y : More specifically, let B0 [ Y be the box of desired states;

all other states y [ R; y � B0 will be called undesirable.

Let A ðiÞ ¼ xðiÞ; xðiÞ
� �

# X ðiÞ be a closed interval of the ith input X (i), and B ðlÞ ¼

yðlÞ; yðlÞ
h i

# Y ðlÞ a closed interval of the lth output Y (l). We assume that for every input i from

1 to n, we have information about ith input expressed as a finite collection of N ðiÞ [ N
weighted intervals. In particular, denote the uncertainty structure on the i’th input as

SðiÞ :¼ AðiÞ
1 ; pðiÞ1

� �
; . . .; AðiÞ

j ðiÞ
; pðiÞ

j ðiÞ

D E
; . . .; AðiÞ

N ðiÞ ; p
ðiÞ
N ðiÞ

� �n o
;

where j ðiÞ [ NN ðiÞ ;AðiÞ
j ðiÞ

¼ xðiÞ
j ðiÞ
; xðiÞ

j ðiÞ

h i
# X ðiÞ is one such interval, pðiÞ

j ðiÞ
[ ½0; 1�; and we have

;i [ Nn the probabilistic normalization criterion

XN ðiÞ

j ðiÞ¼1

pðiÞ
j ðiÞ

¼ 1: ð1Þ

So in general, across the different inputs X (i), we can choose a particular combination of

intervals AðiÞ
j ðiÞ
; one for each input dimension X (i). Denote ~j :¼ k j ð1Þ; j ð2Þ; . . .; j ðnÞl as indicating

these combinations. There are N :¼
Qn

i¼1N
ðiÞ such possible combinations. Since, there exists

a bijective mapping between NN and the set of all combinations ~j; we can thereby use the

j [ NN to enumerate the various possible ~j: Also, denote j ðiÞ [ ~j to indicate that a particular

j (i) is one of the components of ~j:

So for each such combination ~j; we can define the box A~j as the Cartesian product of the

corresponding intervals:

A~j :¼ £
n

i¼1
AðiÞ
j ðiÞ

[ X;

also denoted Aj [ X as appropriate. Furthermore, assume that the information corresponding

to different parameters are independent. Then for each combination ~j; we have the overall

probability “mass” p~j :¼
Qn

i¼1p
ðiÞ
j ðiÞ
; also denoted Pj. In this way, from the individual

uncertainty structures SðiÞ; we can construct the overall input uncertainty structure

S :¼ kA~j; p~jl
n o

~j
¼ {kA1; p1l; . . .; kAj; pjl; . . .; kAN ; pNl}:

An example is shown in figure 1 for n ¼ 2 input parameters and N ð1Þ ¼ N ð2Þ ¼ 2 intervals

on each input parameter. The input intervals Að1Þ
1 ; Að1Þ

2 on X ð1Þ and Að2Þ
1 ; Að2Þ

2 on X ð2Þ are shown,

with probabilities

pð1Þ1 ¼ 0:4; pð1Þ2 ¼ 0:6; pð2Þ1 ¼ 0:2; pð2Þ2 ¼ 0:8;

which assignment satisfies equation (1). The boxes A~j and masses p~j are shown, along with

their enumerated forms Aj; pj: The bijective mapping NN $ {~j} is

k1; k1; 1ll; k2; k1; 2ll; k3; k2; 1ll; k4; k2; 2ll

shown as tuples of the form k j;~j ¼ kj ð1Þ; j ð2Þll:
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Note that for illustrative purposes, in figure 1, we show the boxes AðiÞ
j ðiÞ

slightly offset from

each other, in order to clearly distinguish them. In fact, their borders overlap where they are

shown very close to each other.

2.2 Consistent probability measures

Consider a probability measure P on Rn: For an arbitrary box in the input space A [ X;

we say that the total probability PðAÞ is consistent with the input uncertainty structure S if

there exists a collection of total probabilities kPjðAÞl; which are concentrated on the

corresponding boxes Aj, such that

PðAÞ ¼
XN
j¼1

pjPjðAÞ:

An example is also shown in figure 1, for A [ X as illustrated. It can be demonstrated that

PðAÞ ¼ 0:2 is consistent with S, because for the distribution of total probabilities kPjðAÞl ¼
k0:5; 0:5; 0; 0l we have

XN
j¼1

pjPjðAÞ ¼ 0:08 £ 0:5þ 0:32 £ 0:5þ 0:48 £ 0þ 0:12 £ 0 ¼ 0:2 ¼ PðAÞ:

Figure 1. Example input uncertainty structure S.
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2.3 Probability intervals

Our goal is to describe the smallest interval P :¼ P;P
� �

that contains all possible values of

Pr ðf ðxÞ [ B0Þ ¼ Pð{x : f ðxÞ [ B0}Þ for all consistent probability measures P(A).

Theorem 1

P ¼
X

j:f ðAjÞ#B0

pj; P ¼
X

j:f ðAjÞ>B0–Y
pj: ð2Þ

2.4 Comments

. Proofs of all theorems, corollaries and propositions can be found in the Appendix.

. The problem formulation, including a different version of Theorem 1, was originally

expressed by Joslyn and Helton [9].

. Many readers will recognize equation (2) as formulae from the Dempster–Shafer theory

[4,13]: P is the formula for belief, and P is the formula for plausibility, with boxes Aj as

focal elements, and with pj being the mass of the “basic probability assignment” of the

corresponding box Aj. The formula for the mass of the box is also familiar: it corresponds

to the Dempster–Shafer combination of the corresponding “knowledge bases” S(i). This

similarity is no accident: Dempster–Shafer formalism was originally designed to describe

exactly such situations—when we have only partial information about probabilities.

. In particular, we assume a random set interpretation of a Dempster–Shafer structure

[1,12], so that the weights pðiÞ
j ðiÞ

are interpreted as values of a discrete probability density

over the atomic events which are actually the intervals AðiÞ
j ðiÞ
; and thus which may be

overlapping, included within each other, or disjoint.

. Similarly, our formulation of the input uncertainty structure, both the dimensional form

S(i) and the overall form S, is isomorphic to a formulation as a finite random set [3,9],

which is itself isomorphic to Dempster–Shafer evidence theory.

3. Basic sampling results

Theorem 1 describes how we can compute the bounds P and P in the ideal situation when we

know the function f(x). In reality, all we know are some samples kxk; f ðxkÞl from this function.

Denote yk ¼ f ðxkÞ; and let S :¼ {kx1; y1l; . . .; kxk; ykl; . . .} be an infinite sequence of sample

points for k [ N: For some M [ N; denote SM :¼ {kx1; y1l; . . .; kxM; yMl} as the initial finite

subsequence of M sample points.

How can we estimate P and P based on these samples?

3.1 Lower probability

Let us start with P. According to Proposition 1, the actual value P is the sum of the values pj
for all the boxes Aj for which f ðAjÞ # B0: This set theoretical condition can be re-expressed

in logical terms:

f ðAjÞ # B0 ; {f ðxÞ : x [ Aj} # B0 ; ;x [ Aj; f ðxÞ [ B0 ; x [ Aj ! f ðxÞ [ B0
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Thus, the left side of equation (2) can be restated as:

P ¼
X

j:x[Aj!f ðxÞ[B0

pj:

So, since we only know the value of f(x) on M different inputs xk, it makes sense to use as

an estimator the same expression on the sample data set, that is to define:

PM :¼
X

j:;k#M;xk[Aj!yk[B0

pj: ð3Þ

We will show below that PM is, indeed, a good estimator of P:

Before that, it is useful to consider some of the properties of PM: First, note that equation

(3) can be restated, by logical expansion of the implication operator and de Morgan over

universal quantification, as

PM ¼
X

;j:;k#M;xk�Aj_yk[B0

pj ¼
X

;j:’6 k#M;xk[Aj^yk�B0

pj:

In other words, PM includes the pj values for any box Aj which is not “contradicted” by a

data point kxk; ykl such that xk is in the box Aj, but nonetheless yk � B0: Note that forM ¼ 0;

there can be no such data points, since S0 is empty (there are no data points at all). Thus

P0 ¼
PN

j¼1pj ¼ 1; so that all boxes Aj are included. For M . 0; as data points kxk; ykl [ SM
are encountered for which yk � B0; all the boxes Aj ] xk become excluded from PM : Hence

0 , M , M0 ! PM $ PM0 ; so that PM is monotonically non-increasing in M.

Consider now a particular box Aj. There are two possibilities:

1. ;x [ Aj; f ðxÞ [ B0 : By equation (2), pj is not excluded from P: Moreover, no

contradictory data point will be encountered, so pj can never be excluded from PM :

2. ’x [ Aj; f ðxÞ � B0 : Now pj will be excluded from P: But it might be that no

such contradictory x is encountered as an xk in SM, so that pj may or may not be excluded

from PM:

Thus, we can see that ;M . 0;P # PM :

So PM is a monotonically non-increasing sequence bounded below by P: Thus PM has a

limit, and it’s reasonable to ask if that limit is, indeed P; and to ask about the convergence of

PM ! P as M !1: Our proof actually proves a stronger result: not only does PM give the

correct value of P in the limit as M !1; but it also does so for a sufficiently large, but finite,

number M0 of sample points.

Theorem 2. Let f : Rn 7! Rm be a continuous function, S ¼ {kx1; y1l; . . .; kxk; ykl; . . .} be an

infinite sequence of pairs such that the values xk are everywhere dense in X, and yk ¼ f ðxkÞ:

Let SM be the finite subsequence of S for k # M; and let PM be defined as in equation (3) on

SM. Then, there exists an integer M0 such that ;M $ M0; PM ¼ P:

Corollary 3. Given the conditions holding in Theorem 2, then

lim
M!1

PM ¼ P:
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Proposition 4. The condition that a sequence {x1; . . .; xk; . . .} is everywhere dense is

satisfied if to select xk, we generate independent random vectors—random relative to some

probability distribution for which the probability density function rðxÞ is continuous and

positive everywhere on the set X.

3.2 Upper probability

By similar reasoning to P; according to Theorem 1, the probability P is the sum of the

probabilities pj for all boxes j for which f ðAjÞ> B0 – Y: This set theoretical condition can

also be expressed in logical terms:

f ðAjÞ> B0 – Y ; { f ðxÞ : x [ Aj}> B0 – Y ; ’x [ Rn; x [ Aj ^ f ðxÞ [ B0:

Thus, the right side of equation (2) can be restated as:

P ¼
X

j:’x[Rn;x[Aj^f ðxÞ[B0

pj:

So in seeking an estimator for P; we can similarly advance:

PM U
X

j:’k#M;xk[Aj^yk[B0

pj: ð4Þ

Similarly, but conversely, to P we can easily conclude that PM is a monotonically non-

decreasing sequence bounded above by P: Thus it also has a limit. Does this limit equals P?

Well, unlike P; this limit may be different from the desired value P:

Theorem 5. There exists a continuous function f(x) and an everywhere dense sequence

kxk; ykl for which PM ! 0 and P ¼ 1:

However, a natural minor modification of (2) considered in Section 4.2 below will lead to

the desired result.

3.3 Comments

. Equations (3) and (4) were originally proposed by Joslyn and Helton [9] as estimators of

the Dempster–Shafer uncertainty measures Bel and Pl, respectively.

. As mentioned above, the Dempster–Shafer formalism inspiring this formulation is

isomorphic to a random set approach [3]. From this viewpoint, our convergence result can

be obtained as a particular case of convergence results for random sets [10].

. How algorithmic are equations (3) and (4)? For each rectangular box A~j ¼ £n
i¼1 A

ðiÞ
j ðiÞ
;

checking whether a given input x ¼ kx ð1Þ; . . .; x ðiÞ; . . .; x ðnÞl belongs to this box means

checking that for every i [ Nn; the value x ðiÞ belongs to the corresponding interval AðiÞ
j ðiÞ

for

each j ðiÞ [ ~j; i.e. checking ;i [ Nn; ;j
ðiÞ [ ~j; whether xðiÞ

j ðiÞ
# x ðiÞ # xðiÞ

j ðiÞ
: So since Aj and

B0 are rectangular boxes, checking whether xk [ Aj or whether yk [ B0 means checking n

and m corresponding double inequalities respectively. Thus, computing the above

estimates PM and PM requires finitely many computational steps.

. For the above algorithm, the number of steps is proportional to the total number of boxes

and it can actually be quite large. In Section 5 we will show how we can decrease
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the computation time when the number of boxes is large.

. In the proof of Theorem 2 and Corollary 3, we do not use the fact that B0 is a closed box,

only that it is a closed set.

4. Advanced results

We now consider some other results which hold for this problem.

4.1 Continuity and density requirements

Theorem 2 was proven using two assumptions: that the function f(x) is continuous, and that

the sequence xk is everywhere dense. The following propositions show that both the

conditions are necessary.

Theorem 6. There exists a discontinuous function f ðxÞ and an everywhere dense sequence xk
for which PM K P:

The counter-example used in the proof is quite natural. Moreover, for discontinuous

functions, not only is it the case that our method cannot extract the correct value P; but

moreover, it is impossible to do so by any method.

Theorem 7. There exists a discontinuous function f ðxÞ and a continuous function ~fðxÞ; for

which P – ~P; but for which, for some everywhere dense sequence xk; we have f ðxkÞ ¼ ~fðxkÞ

for all k.

Thus, we have the same set of pairs kxk; ykl to start with, so no matter what method we use,

we cannot end up with two different values for P:

Similarly, if the sequence is not everywhere dense, we cannot reconstruct P; no matter

what method we use.

Theorem 8. Let the boxes and probabilities be given, and let B0 , Rm be a closed set. Then,

for every sequence xk which is not everywhere dense in X, there exist different continuous

functions f(x) and ~fðxÞ for which P – ~P; but for which we have f ðxkÞ ¼ ~fðxkÞ for all k.

4.2 Modification of upper probability conditions

Similar to the counter-example from the proof of Theorem 6, the counter-example used in the

proof of Theorem 5 is also very natural. So, we have to modify the original estimator PM for

the upper probability. Fortunately, such a modification is relatively easy and straightforward,

introducing only modest considerations for the semantics of the kinds of risk and reliability

problems concerning us.

First, we know that the box of desirable states B0 can be characterized by intervals on the

dimensions of the output space as

B0 ¼ £
m

l¼1
BðlÞ
0 ¼ £

m

l¼1
yðlÞ
0
; yðlÞ0

h i
:
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So now consider a small positive real number a . 0; and define the extended desirable box as:

Ba U yð1Þ
0

2 a; yð1Þ0 þ a
h i

£ yð2Þ
0

2 a; yð2Þ0 þ a
h i

£ . . . £ yðmÞ
0

2 a; yðmÞ0 þ a
h i

:

Elements of this extended boxBa do not necessarily satisfy all 2m desired inequalities generated

by the output intervalsBðlÞ
0 ; but their deviation from each of these inequalities does not exceeda.

Now, our reliability requirement becomes that f(x) belongs to this extended box, i.e.

f ðxÞ [ Ba: The upper bound for this probability is then

Pa ¼
X

j:f ðAjÞ>Ba–Y
pj: ð5Þ

Since the modified condition f ðxÞ [ Ba is less demanding than the original condition

f ðxÞ [ B0; it is now easier for a state to be desirable, so the probability for a state to

be desirable is higher: P # Pa: The actual upper probability can be anywhere between P

and Pa: From this viewpoint, when we compute an estimate for P; it is also reasonable,

instead of sticking to the original set B0, to depart from (4) and instead use our slightly

enlarged set Ba :

Pa;M U
X

j:’k#M;xk[Aj^yk[Ba

pj:

Theorem 9. Let f : Rn 7! Rm be a continuous function, S ¼ kxk; ykl; k . 0 be an infinite

sequence of pairs such that the values xk are everywhere dense in X, and yk ¼ f ðxkÞ: Let SM be

the finite subsequence of S for k # M; and for a small number a . 0; let Pa;M be defined as

in equation (3) on SM. Then there exists an integer M0 such that ;M $ M0; Pa;M [ ½P;Pa�:

The main idea of the above result is that the required bounds on the state variables yk are

not exact, they can be exceeded a little bit—by some small value a—without any harm to the

system. In the above result, we used the same value a . 0 for everyM. Intuitively, the more

pairs we have, the more accurately we can describe the requirements. Therefore, it seems

reasonable, instead of selecting a single a for all M, to make a decrease to 0 when

M !1 : aM ! 0: Then, if we can still prove the inequality P # PaM ;M # PaM
; we will be

able to conclude, in the limit M !1; that PaM ;M ! P: But, as shown below, this is not

possible—and in this sense, Theorem 9 is the best we can get.

Theorem 10. Let aM ! 0 be a sequence of positive real numbers. Then, there exists a

continuous function f ðxÞ and an infinite sequence of pairs kxk; ykl for which the values xk are

everywhere dense in X, and PaM ;M ! P:

5. Estimator calculations for large numbers of inputs

Equations (3)–(5) requires every single box j to be analyzed. If for each variable x ðiÞ;we have

N ðiÞ possible intervals, then have N ¼
QN

i¼1N
ðiÞ boxes. In a nuclear facility example, we

could have about n ¼ 100 variables, and at least two boxes N ðiÞ $ 2 for each variable.
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Thus, the total number of boxes is 2100—which is approximately 1030. Testing reveals that

many boxes are well beyond the capacity of modern computers. So what do we do?

A natural idea is to use Monte-Carlo simulation to estimate, e.g. PM : Indeed, equation (3)

can be interpreted as follows. For each box j, let

xMðjÞ ¼
1; ;k # M; xk [ Aj ! yk [ B0

0; otherwise

(

Then equation (3) takes the form P ¼
PN

j¼1pjxMðjÞ: In other words, P is a mathematical

expectation of xMðjÞ under the probability distribution in which each box Aj appears with

probability pj:

Recall that we constructed a bijective mapping between the integers NN and the vectors
~j ¼ k j ð1Þ; . . .; j ðnÞl: Since the probability pj is defined as the product

QN
i¼1p

ðiÞ
j ðiÞ

of the

corresponding probabilities pðiÞ
j ðiÞ
; to get this probability distribution, it is sufficient to

independently select each situation j ðiÞ [ ~j with probability pðiÞ
j ðiÞ
: This can be done, for

example, as follows: we subdivide the interval [0,1] into N ðiÞ subintervals of lengths pðiÞ1 ; pðiÞ2 ;

etc.—i.e. into the intervals ½0; pðiÞ1 �; ½ pðiÞ1 ; pðiÞ1 þ pðiÞ2 �; etc. and then run a random number

generator corresponding to the uniform distribution on [0,1] to select a situation depending

on the interval into which the resulting random number falls.

Before showing the algorithm, we introduce some auxiliary computations:

. For each i [ Nn; we compute the values qðiÞ0 U 0 and qðiÞ
j ðiÞþ1

U qðiÞ
j ðiÞ

þ pðiÞ
j ðiÞþ1

; 0 # j ðiÞ #

N ðiÞ 2 1:

. For each k [ NM ; we check whether yk [ B0; i.e. whether the corresponding inequalities

yðlÞ # yðlÞk # �y ðlÞ are satisfied for all l [ Nm:

Then, to estimate P; we select the number of runs R; the larger R is, the better is the estimate.

Now for the algorithm itself, for each run r [ NR; we do the following:

. For i from 1 to n:

– Run a random number generator (RNG) corresponding to the uniform

distribution on the interval [0,1] and store the result in r (i).

– By comparing the result r (i) of this RNG with the values qðiÞ
j ðiÞ
; we find and retain

the value j ðiÞ for which r ðiÞ [ ½qðiÞ
j ðiÞ21

; qðiÞ
j ðiÞ
�:

. For every k [ NM for which yk � B0; we check whether xk [ Aj; i.e. whether the

inequalities xðiÞ
j ðiÞ

# xðiÞk # �x
ðiÞ
j ðiÞ

hold for all i [ Nn: After that:

– If for some k for which yk � B0; we have xk [ Aj; this means that

: ð;k # M; xk [ Aj ! yk [ B0Þ;

so we set xr ¼ 0;

– Otherwise, we set xr ¼ 1:

Finally, we take the average
PR

r¼1xr=R as the desired estimate for PM:

The above algorithm is a standard Monte-Carlo algorithm, so when R!1; its

result converges to PM : Due Theorem 2, for sufficiently large M, we have PM ¼ P: Therefore,

we can conclude that for sufficiently largeM, the results of the above algorithm converge to PM:
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An algorithm for computing Pa;M is similar to the algorithm for computing PM ; with the

only difference that here:

. xMðjÞ ¼ 1 if ’k # M; xk [ Aj ^ yk [ Ba:

. xMðjÞ ¼ 0 otherwise

Theorem 1. We need to show three things:

1. For every consistent probability distribution P, P # Probð f ðxÞ [ B0Þ # P:

By definition, the fact that the probability measure P(A) is consistent means that

PðAÞ ¼
XN
j¼1

pjPjðAÞ

for some probability measures PjðAÞ which are concentrated within the corresponding boxes

Aj: The probability Prð f ðxÞ [ B0Þ is equal to the probability that x belongs to the set f
21ðB0Þ

of all values x for which f ðxÞ [ B0; so that Prð f ðxÞ [ B0Þ ¼ Pð f 21ðB0ÞÞ: In particular,

for A ¼ f 21ðB0Þ; we have P U Pðf 21ðB0ÞÞ ¼
PN

j¼1pjPjðf
21ðB0ÞÞ:

For each combined situation j, the probability measure PjðAÞ is located on the box Aj.

Thus:

. If a box Aj has no elements x with f ðxÞ [ B0—i.e. if f ðAjÞ has no common elements with

B0—we have Pjð f
21ðB0ÞÞ ¼ 0:

. For those boxes that do contain elements xwith f ðxÞ [ B0—i.e. for which f ðAjÞ has a non-

empty intersection with B0; the conditional probability Pjð f
21ðB0ÞÞ—just like any other

probability—cannot exceed 1.

Thus, replacing Pjð f
21ðB0ÞÞ with 0 for boxes for which f ðAjÞ that do not intersect B0 and

with 1 for boxes that do, we get an upper bound for P—the upper bound which is exactly the

expression P from equation (2).

Similarly, since the probability measure PjðAÞ is located on the box Aj; we have PjðAjÞ ¼ 1:

Therefore:

. Pjð f
21ðB0ÞÞ ¼ 1 for all boxes Aj for which f ðB0Þ # Aj:

. For all other boxes, the conditional probability is a non-negative number

Pjð f
21ðB0ÞÞ $ 0—just like any other probability.

Thus, replacing Pjðf
21ðB0ÞÞ with 0 for boxes for which f ðAjÞ that do not contain B0 and

with 1 for boxes that do, we get an upper bound for P—the upper bound which is exactly the

expression P from equation (2).

2. There exists a consistent probability distribution PðAÞ for which Prðf ðxÞ [ B0Þ ¼ P:

We select the probability PjðAÞ in one of two ways:

f ðAjÞ # B0 : Select an arbitrary point xj [ Aj; and select PjðAÞ such that this point occurs

with probability 1, i.e. for which PjðAÞ ¼ 1 if xj [ A and PjðAÞ ¼ 0;

otherwise.
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f ðAjÞ # B0 : By definition of the subset relation, there exists a point yj [ f ðAjÞ with

yj � B0: Since yj [ f ðAjÞ; there exists a value xj [ Aj for which yj ¼ f ðxjÞ

and for which, therefore, f ðxjÞ � B0: For each such box, as PjðAÞ; we take a

probability distribution in which this point occurs with probability 1, i.e. for

which PjðAÞ ¼ 1 if xj [ A and PjðAÞ ¼ 0; otherwise.

For these selected distributions, Pjð f
21ðB0ÞÞ ¼ 1 for boxes for which f ðAjÞ # B0; and

Pjð f
21ðB0ÞÞ ¼ 0 for all other boxes. Thus, for the resulting distribution PðAÞ; the probability

P ¼ Pð f 21ðB0ÞÞ is equal to P:

3. There exists a consistent probability distribution PðAÞ for which Prðf ðxÞ [ B0Þ ¼ P:

. For each box Aj for which f ðAjÞ> B0 ¼ Y; we select an arbitrary point xj within this box,

and, as PjðAÞ; take a probability distribution in which this point occurs with probability 1,

i.e. for which PjðAÞ ¼ 1 if xj [ A and PjðAÞ ¼ 0; otherwise.

. For each box Aj for which f ðAjÞ> B0 – Y; by definition of a non-empty set, there exists a

point yj [ f ðAjÞ> B0: Since yj [ f ðAjÞ; there exists a value xj [ Aj for which yj ¼ f ðxjÞ

and for which, therefore, yj ¼ f ðxjÞ [ B0: For each such box, as PjðAÞ; we take a

probability distribution in which this point occurs with probability 1, i.e. for which

PjðAÞ ¼ 1 if xj [ E and PjðAÞ ¼ 0; otherwise.

Thus, for selected distributions, Pjðf
21ðB0ÞÞ ¼ 0 for boxes for which f ðAjÞ> B0 ¼ Y; and

Pjð f
21ðB0ÞÞ ¼ 1 for all other boxes. Thus, for the resulting distribution PðAÞ; the probability

P ¼ Pð f 21ðB0ÞÞ is equal to P:

Theorem 2. We will show that for every box Aj; there exists an integer Mj such that for every

M $ Mj; the condition f ðAjÞ # B0 is equivalent to ;k # M; xk [ Aj ! yk [ B0: Then, if we

take the largest of these values Mj as M0; we will be able to conclude that for every M $ M0;

these two conditions are equivalent to each other for every box j. Thus, by comparing the

formula for P from equation (2) and the definition of PM from equation (3), we will be able

to conclude that indeed PM ¼ P:

Let us show that the two conditions are indeed equivalent. The equivalence proof will be

different for two cases, when f ðAjÞ # B0 and when f ðAjÞ � B0: Specifically, we will show that:

. When f ðAjÞ # B0; then the finite analog of this condition is also satisfied, i.e. ;k # M;

xk [ Aj ! yk [ B0:

. When f ðAjÞ � B0; then the finite analog of this condition is also satisfied, i.e. : ð;k # M;

xk [ Aj ! yk [ B0; or, equivalently,

’k # M; xk [ Aj ^ yk � B0:

f ðAjÞ # B0: For every x [ Aj; we have f ðxÞ [ B0: In particular, when x ¼ xk; from

xk [ Aj; we will thus be able to conclude that yk ¼ f ðxkÞ [ B0; so the finite

version of this condition is also satisfied.

f ðAjÞ � B0: So there exists a point x* [ Aj for which y* U f ðx*Þ � B0—or, equivalently,

f ðx*Þ [ B0; where �· denotes set complement. Since B0 is a closed set, its
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complement B0 is an open set. Therefore, together with a point f ðx*Þ; it

contains an entire open ball B1ð f ðx*ÞÞ U {y : dðy; y*Þ , 1} of a positive

radius 1 . 0 with a center in f ðx*Þ: So, if dðy; f ðx*ÞÞ , 1; then y [ B0; i.e.

y � B0:

The function f(x) is continuous, in particular, it is continuous at the point x ¼ x*:Bydefinition

of continuity, thismeans that for every 1 . 0; there exists a d . 0 such that if dðx; x*Þ , d; then

dðf ðxÞ; f ðx*ÞÞ , 1: We already know that dðf ðxÞ; f ðx*ÞÞ , 1 means that f ðxÞ [ �B0; i.e.

f ðxÞ � B0: Therefore, we can conclude that when dðx; x*Þ , d; then f ðxÞ � B0:

We know that the point x* belongs to the box Aj. There are two possibilities:

x* is strictly inside Aj: Let d0 be the smallest distance from x* to any of the edges. Then,

dðx; x*Þ , d0 implies that x is also inside the box Aj. Hence, if we take d1 U minðd; d0Þ;

we can conclude the following: when dðx; x*Þ , d1; then x [ Aj and f ðxÞ � B0:

We assumed that the sequence {xk} is everywhere dense in X. By definition, this means

that for every point x [ X (in particular, for x* [ Aj) and for every d . 0 (in particular,

for d ¼ d1), there exists a point xk* for which dðxk*; x*Þ , d1:We already know that in this

case, xk* [ Aj and y*
k ¼ f ðxk*Þ � B0: Therefore, for every M $ k*; there exists a k # M

(namely, k ¼ k*) for which xk [ Aj ^ yk � B0: Hence, if we take this k* as Mj, then the

finite analog of the condition f ðAjÞ � B0 is indeed satisfied for all M $ Mj:

x* is on the border of Aj: For each point on the border and for every d, there exists a d-close

point inside the box. So, there exists a point x** inside the box Aj for which

dðx*; x**Þ , d—and therefore, f ðx**Þ � B0: So, we have an internal point x** [ Aj for

which f ðx**Þ � B0: For this new point, we can repeat the same proof that we had started

with x*, and conclude that there exists an Mj such that for every M $ Mj; there exists a

k # M for which xk [ Aj ^ yk � B0—i.e. the finite analog of the condition f ðAjÞ � B0 is

indeed satisfied for all M $ Mj:

Corollary 3. Follows immediately.

Proposition 4. Let x [ <N
j¼1Aj be a point, and 1 . 0: Let us show that with probability 1,

one of the points xk will be 1-close to x. Indeed, let I U X > B1ðxÞ; where B1ðxÞ is the open

ball around x. For the probability distribution Psel that we use to select the points xk, the

probability PselðBÞ that a randomly picked vector x is inside B is equal to PselðBÞ ¼
Ð
B
rðyÞdy:

The intersection B has a positive volume, so, since the probability density function rðyÞ is

positive and continuous, this integral PselðBÞ is also positive.

Hence, for every k, the probability that xk � B is equal to 1 2 PselðBÞ , 1: Since we assume

that the points are independently selected on each iteration, the probability that on each of M

selections, we get a point xk � B is equal to the product of the corresponding M probabilities,

i.e. to ð1 2 PselðBÞÞ
M: When M !1; this probability tends to 0, so we conclude that

the probability that none of the infinitely many points xk is inside B is equal to 0. So, with

probability 1, there is a point xk inside B—i.e. a point xk [ X for which dðx; xkÞ # 1:

Since every ball contains a smaller ball with rational center and rational radius, it is

sufficient to show that we can find xk within each ball of rational center and radius. There are

countably many such balls, and for each, the probability of not having xk inside it is 0. Thus,
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the probability that one of these balls does not contain any of xk ’s is also 1—so with

probability 1, every ball has a point from xk, which means, by definition, that the sequence

{xk} is everywhere dense.

Theorem 5. Let n ¼ 1; N ð1Þ ¼ 1; and Að1Þ
1 ¼ ½0; 1� (with pð1Þ1 ¼ 1). Let xk be an arbitrary

everywhere dense sequence of numbers from the open interval ð0; 1Þ—e.g. a sequence

obtained by using a random number generator that generates numbers uniformly distributed

on the interval [0,1].

Let us take f ðxÞ ¼ x and B0 ¼ ½1; 2�: Then, f ðAjÞ> B0 – Y; so P ¼ 1: On the other hand,

since the values xk are taken from the inside of the interval [0,1], none of these values is equal

to 1, and therefore, none of the points xk [ Aj has the property that yk [ B0: So, for every M,

we have PM ¼ 0:

Theorem 6. Again, let n ¼ 1;N ð1Þ ¼ 1; andAð1Þ
1 ¼ ½0; 1� (with pð1Þ1 ¼ 1). Let xk be an arbitrary

everywhere dense sequence of positive numbers—e.g. a sequence obtained by using a random

number generator that generates numbers uniformly distributed on the interval [0,1].

Let f ðxÞ be the sign function

f ðxÞ U

0; x ¼ 0

1; x . 0

21; x , 0

;

8>><
>>:

and let B0 ¼ ½0:5; 1:5�: Then, for the only box Aj ¼ ½0; 1�; we have f ðAjÞ ¼ {0; 1} � B0;

so P ¼ 0: However, since all the values xk are positive, we have yk ¼ f ðxkÞ ¼ 1; hence

yk [ B0; thence PM ¼ 1 for all M. Here, as M !1; we have PM ! 1; so PM K P:

Theorem 7. Let us take f(x), the boxes, and the everywhere dense sequence the same as in the

proof of Theorem 6, and ~fðxÞ ¼ 1 for all x. Then, 0 ¼ P – ~P ¼ 1:

Theorem 8. Since the sequence xk is not everywhere dense, there exists a ball brðx*Þ # Rn

that is not covered by any element from this sequence. Since B0 , Rm; there exists a point

y* [ Rm; y* � B0: Define the function f(x) as a constant equal to some point y** [ B0;

for this function, Pð f 21ðB0ÞÞ ¼ 1: As ~fðxÞ; we take a function

~fðxÞ ¼ y** þmax 0; 12
dðx; x*Þ

r

� �
· ðy*2 y **Þ:

One can easily see that ~fðxÞ ¼ f ðxÞ for all x � brðx*Þ; so the sequences kxk; ykl for these

two functions are indeed the same. However, since ~fðx*Þ ¼ y* � B0; there exists a box Aj—

namely, any box that contains the point x*—for which f ðAjÞ � B0 and therefore, we have
~P , 1 (while P ¼ 1).

Theorem 9. We have already proven, in the discussion of the formula for PM, that PM # P:

Thus, we also have Pa;M # Pa: So, to complete our proof, we must show that there exists an

M0 such that for every M $ M0; we have P # Pa;M:
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Similarly to the proof of Theorem 2, we will prove that for every box Aj, there exists a

value Mj such that for every M $ Mj; the condition f ðAjÞ> B0 – Y implies that

’k # M; xk [ Aj ^ yk [ Ba:

If we prove this, then, for every M $ M0 U maxjMj; we will be able to conclude that all

the terms pj involved in the formula for P are also included in the sum that defines Pa;M and

therefore, that indeed P # Pa;M:

Indeed, let f ðAjÞ> B0 – Y: This means that there exists a value y* [ B0 for which

y* [ f ðAjÞ; i.e. for which y* ¼ f ðx*Þ for some x* [ Aj:

Since the function f ðxÞ is continuous, in particular, it is continuous at the point x ¼ x*:

By definition of continuity, this means that for every a . 0; there exists a d . 0 such that if

dðx; x*Þ , d; then dð f ðxÞ; f ðx*ÞÞ , a=2: We already know that y* ¼ f ðx*Þ [ B0; hence f ðxÞ

belongs to Ba (actually, it even belongs to Ba=2). Therefore, we can conclude that when

dðx; x*Þ , d; then f ðxÞ [ Ba:

We know that the point x* belongs to the box Aj. There are two possibilities:

x* is inside Aj: Let d0 be the smallest distance from x* to any of the edges. Then,

dðx; x*Þ , d0 implies that x is also inside the box Aj. Hence, if we take d1 U minðd; d0Þ;

we can conclude that when dðx; x*Þ , d1; then x [ Aj and f ðxÞ [ Ba:

We assumed that the sequence {xk} is everywhere dense in X. By definition, this

means that for every point x [ X (in particular, for x* [ Aj) and for every d . 0

(in particular, for d ¼ d1), there exists a point xk* for which dðxk*; x*Þ , d1: We already

know that in this case, xk* [ Aj and yk* ¼ f ðxk*Þ [ Ba: Therefore, for every M $ k*;

there exists a k # M (namely, k ¼ k*) for which xk [ Aj ^ yk [ Ba: Hence, if we take

this k* asMj, then the finite analog of the condition f ðAjÞ> Ba – Y is indeed satisfied for
all M $ Mj:

x* is on the border of Aj: For each point on the border and for every d, there exists a

d-close point inside the box. So, there exists a point x** inside the box Aj for which

dðx*; x**Þ , d—and therefore, f ðx**Þ [ Ba=2: So, we have an internal point x** [ Aj for

which f ðx**Þ [ Ba=2: For this new point, we can repeat the same proof that we had starting

with x*; and conclude that there exists an Mj such that for every M $ Mj; there exists a

k # M for which xk [ Aj ^ yk [ Ba—i.e. the finite analog of the condition f ðAjÞ> Ba –
Y is indeed satisfied for all M $ Mj:

Theorem 10. Without losing generality, we can assume that aM , 1 for all M.

In this proof, we will use the same box and the same continuous function that was used in

the proof of Theorem 5 that PM K P: namely, we take n ¼ 1; N ð1Þ ¼ 1; Að1Þ
1 ¼ ½0; 1� (with

pð1Þ1 ¼ 1), f ðxÞ ¼ x; and B0 ¼ ½1; 2�: For this choice, P ¼ 1:

We will show that for an appropriately chosen everywhere dense sequence kxk; f ðxkÞl;
we will have PaM ;M ¼ 0 for all M—and thus, PaM ;M K P:

For this, we must make sure that for every k # M; we have yk � BaM
: For our choice of

B0 ¼ ½1; 2�; we have Ba ¼ ½1 2 a; 2 þ a�: For our choice of f ðxÞ ¼ x; we have yk ¼ xk:

Thus, the condition that we need to satisfy is xk , 1 2 aM for all M $ k: In the limit M !1;

aM ! 0; so this condition is satisfied—provided, of course, that xk , 1: The requirement that
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xk is smaller than all possible values 1 2 ak; 1 2 akþ1; . . ., is equivalent to requiring that xk is

smaller than the smallest of the values 1 2 ak; 1 2 akþ1; . . .. The difference between 1 and a

number is the smallest when the subtracted number is the largest, therefore, the above

condition is equivalent to xk , 1 2 bk; where bk U maxðak;akþ1; . . .Þ:

Since aM ! 0; we can conclude that bk ! 0; and one can easily see that bk is a monotonic

sequence: bk $ bkþ1 $ . . . So, to complete the proof, it is sufficient to find an everywhere

dense sequence xk of numbers from the interval [0,1] for which xk , 1 2 bk for some given

monotonic sequence bk ! 0:

Since aM , 1 for all M, we can conclude that bk ¼ ðak;akþ1; . . .Þ , 1 for all k.

To obtain such a sequence xk, let us start with an arbitrary everywhere dense sequence

y1; y2; . . . of numbers from the open interval (0,1). Let us denote y0 U 0: Based on this

sequence, we will design a new everywhere dense sequence xk; this new sequence will

consist of zero, one, or several repetitions of y0 ¼ 0; followed by one or several

repetitions of y1, then one or several repetitions of y2, etc. Since all the elements

from yk are also in the sequence xk, this new sequence is also everywhere dense in the

interval [0,1].

We start by checking whether y1 , 1 2 b1:

. If this inequality is satisfied, we start repeating y1, i.e. take x1 ¼ y1:

. If this inequality is not satisfied, we take x1 ¼ y0 ¼ 0:

In both cases, we have x1 , 1 2 b1:

. In the first case, it is true due to our choice of x1.

. In the second case, since bk , 1; we have 0 , 1 2 b1:

In general, if we have already selected x1; . . .; xk; and xk ¼ yl for some l, then, to select

xkþ1; we check whether ylþ1 , 1 2 bkþ1:

. If this inequality is satisfied, we start repeating ylþ1, i.e. take xkþ1 ¼ ylþ1:

. If this inequality is not satisfied, we continue to take xkþ1 ¼ yl:

In both cases, we have xkþ1 , 1 2 bkþ1:

. In the first case, it is true due to our choice of xkþ1.

. In the second case, since we had xk ¼ yl , 1 2 bk and bk is a monotonic

sequence bk $ bkþ1; we conclude that xkþ1 ¼ yl , 1 2 bk # 1 2 bkþ1; i.e. that

xkþ1 , 1 2 bkþ1:

To complete the proof, we must show that the process of selecting xk will not indefinitely

stumble on a value yl and that eventually, it will move on to the next value—thus

guaranteeing that all values yl will be covered. Indeed, the value yl is selected as xk only until

the inequality ylþ1 , 1 2 bk is not satisfied, i.e. until we have ylþ1 $ 1 2 bk: This cannot be

true for arbitrarily large k because then, in the limit k!1; we would have ylþ1 $ 1; and we

assumed that all the values yk are from the open interval (0,1). So, all the values yl are indeed

covered.
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