
DEEP: Data Exploration through

Extension and Projection

Cliff Joslyn and Susan Mniszewski
DRAFT

March, 2002

Abstract

We introduce the Data Exploration through Extension and Projection (deep) methodology
for guided, unsupervised exploration of ordinally- and nominally-supported databases. Data-
bases are defined in the context of General Systems Theory (gst) and General Information
Theory (git) as multidimensional count (integer) arrays, yielding multidimensional fuzzy rela-
tions equipped with operations for projection, (context-dependent) extension, subsetting, and
supersetting. Local measures of structure are obtained in terms of compression of support size
(relative crisp nonspecificity) and uniformity (group-relative entropy) over the partial ordering
of extended state distributions. The methodology is described as alternating, possibly heuristic,
application of the database operations to an initial subsetted projection in search of areas of high
local structure. An algorithmic approach in terms of paths through the 2n projection space is
available. Application to fraud detection for data mining in relational databases is described, as
well as implementation in both back-end (program-driven) and front-end (user-driven) processes.
Keywords: Data mining, relational theory, possibility theory, entropy, nonspecificity.

Contents

1 Introduction 2

2 Mathematical Preliminaries 4
2.1 Fuzzy Sets, Relations, and Measures . 4
2.2 Distributions and Information Measures . 5

3 Projections and Extensions of Relations 6
3.1 State Spaces . 6
3.2 Relations . 7
3.3 Example . 7

4 Databases 8
4.1 Projection and State Distribution . 8
4.2 Subsetting . 9
4.3 Example . 11

5 Structural Measures Over Extended Subsets 12
5.1 Count Distributions . 12
5.2 Structural Measures . 13
5.3 Example . 17

cliff
Text Box
Joslyn, Cliff A and Mniszeiski, Susan: (2002) "DEEP: Data Exploration through Extension and Projection", Los Alamos Technical Report LAUR 02-1330

6 Method 18
6.1 Database Operations . 18
6.2 General Method . 19
6.3 Examples . 19

6.3.1 Programmatic Example . 19
6.3.2 Continuing Example . 21
6.3.3 Application Example . 21

7 Application to Fraud Detection 22
7.1 Supervised: ”chaining” . 22
7.2 Unsupervised . 22
7.3 Variable selection . 22
7.4 Relation to Ping-pong, etc. 22

8 Implementation 22
8.1 Backend Implementation . 22
8.2 SQL Extension and VisTool Spreadsheets . 23

8.2.1 Non-Grouped Queries . 23
8.2.2 Grouped Queries . 24
8.2.3 Extended, Grouped Queries . 25
8.2.4 Examples . 25

8.3 Front-End Capabilities . 27

1 Introduction

Data mining methods can be broadly distinguished according to a variety of criteria:

• Supervised methods constructs models which identify data as either being similar or dis-
similar to some training data, while unsupervised methods look for generic structure within
databases.

• Automatic methods work algorithmically over large datasets to identify interesting regions,
whereas guided methods work with human interaction using domain-specific knowledge and
heuristics.

• Typology of the data is also very important, with various methods working well with scalar
(cardinal), ordinal, or nominal (categorical) data.

• Dimensionality reduction is a recurring problem in data mining, with methods like clus-
tering and regression introducing new, hybrid dimensional structures onto which data are
projected.

In today’s vast, heterogenous, high dimensional databases, there is a pressing need for methods
which focus the attention of operators, researchers, and managers to relatively small areas (both
dimensionally and cardinally) of special interest. Anomaly and fraud detection is an example of
such an application, where the goal is to identify a usually very small number of “interesting”
data records. A concurrent goal is to deploy methods which respect the original structure of the
database, and don’t distort its dimensionality too much.

2

In this paper we present the Data Exploration through Extension and Projection (deep) method
for largely guided, largely unsupervised exploration of nominally-supported databases. deep is in-
tended to find local areas of high structure, while respecting and retaining the original dimensional-
ity of the database. This method is especially appropriate with either nominal data, low-cardinality
numeric data, or binned scalar data.

The deep approach is rooted in ideas from a number of areas:

• The mathematical approach to General Systems Theory based on mathematical relations
[15, 19].

• Modern database theory, especially relational and multidimensional databases [1, 7] as used
in OnLine Analytical Processing (olap) [6].

• General Information Theory (git) [16], which attempts to represent information, uncertainty,
and structure in systems using mathematical representations which extend beyond probability
measures, including fuzzy sets, relations, and measures.

In particular, we are informed by Klir’s General Systems Problem Solver approach to fuzzy-
relational inductive modeling [15], and the strong relations that current researchers are making
to relational database theory [20, 24] and statistical inference [3, 8]. See also preliminary work by
the author [13].

In the first sections we take some care to develop fundamental concepts and notation. While
this is mathematically simple material, and somewhat redundant with some well-known results, in
this case it will be very valuable, for a number of reasons.

1. In our experience, there are some simple but problematic issues in the formal foundations of
relational theory, as compared to working with real databases, or with statistical approaches
for nominal data based on multi-dimensional contingency tables or histograms. In particular,
what needs to be reconciled is the issue of having multiple data entries per possible state,
resulting, for example, in duplicate entries in rows of a data table. Statistical methods address
this, but relational theory usually handles this by establishing additional key fields as unique
identifiers with functional (deterministic) relations to other fields in the table. We aim to
make these issues very clear.

2. To accomplish this, we use somehwat idiosyncratic usage and notation, relying on vector and
mathematical bag forms (in addition to set theory based representations) to make explicit
use of duplicate entries. We thereby introduce some new concepts of a database bag, state
distribution, and extension in context.

3. Finally, we need to introduce a number of ideas from git. In particular, a number of our
representations and measures of information are based on possibility theory and possibilistic
approaches to the representation of data.

One of our overall purposes is to critique the usual application of git methods. We hold
that typical fuzzy applications based on subjective evaluations need to be complemented by data
and measurement-based methods [10]. But at the same time, we hold that possibilistic methods, in
particular, must be developed on the basis of random sets, that is, statistical collections of imprecise
observations [4, 5, 14]. In this paper we will demonstrate that while measures of possibilistic
information in crisp (non-weighted) sources can be very valuable, that the normal methods of
deriving possibilistic information from converted probabilities are inadequate [12].

3

After the introduction of mathematical concepts and notation, we introduce structural mea-
sures over extensions (in context) of subsetted database projections. The deep method proper is
then introduced in terms of the complementary database operations of projection/extension and
subsetting/supersetting. These operations, when coupled with the structural measures, allow the
identification of local regions of high structure, and a programmatic way for processes (human or
automated) to manuever among these regions.

deep was initially developed as part of a data mining program to detect fraud in large databases
of IRS tax return data. So finally, we explore some of the applications to fraud detection in this
context, and also describe both back-end implementations for automatic cross-aggregation analysis,
and front-end implementations for user-directed data exploration.

2 Mathematical Preliminaries

Denote the natural numbers INM := {1, 2, . . . ,M} and IN := IN∞. Similarly, denote the whole
numbers WM := {0, 1, 2, . . . ,M} and W := W∞.

We wish to work with vector notation in a similar way to set notation, including concepts of
membership, inclusion, intersection, etc. Denote a vector �x := 〈x1, x2, . . . , xM 〉 = 〈xi〉 ,M ∈ W, i ∈
WM . Define the length of �x as |�x| := M . Define the empty vector as �∅ := 〈〉, such that |�∅| = 0.
For a fixed i ∈ INM , denote vector-element inclusion as x ∈ �x := ∃i ∈ INM , x = xi; vector-element
subtraction as

�x − xi :=

{
〈x1, x2, . . . , xi−1, xi+1, . . . , xM 〉 , xi ∈ �x
�x, otherwise

;

and given another vector �x′ := 〈x′
i′〉 , i′ ∈ INM ′ define vector-vector subtraction as �x − �x′ := (((�x −

x′
1) − x′

2) − · · · − x′
M ′). Define sub-vector inclusion as �x ⊆ �x′ := ∀xi ∈ �x, xi ∈ �x′. Define vector

intersection as �x∩ �x′ := 〈xi〉 such that xi ∈ �x and xi ∈ �x′. Define a partition of a vector �x as a new
vector

�x′ := 〈�yj〉 , 1 ≤ j ≤ |�x′| ≤ |�x| (1)

such that ∀x ∈ �x,∃!�yj ∈ �x′, x ∈ �yj.

2.1 Fuzzy Sets, Relations, and Measures

Assume a set of finite dimensions X := {Xi},Xi := {xi
ji
} for 1 ≤ i ≤ M, 1 ≤ ji ≤ ni = |Xi|.

Without ambiguity, denote xi ∈ Xi. The overall state space is therefore X := ×n
i=1Xi with

n := |X| =
∏M

i=1 ni, and individual state vectors �x :=
〈
xi

ji

〉
∈ X.

We now introduce some basic concepts of git [11, 17, 18, 22]. Assume a nonempty, finite set
Ω = {ωi}, 1 ≤ i ≤ n, and a non-empty subset A ⊆ Ω. The characteristic function of A is
χA: Ω
→ {0, 1} with

χA(ωi) =

{
1, ωi ∈ A
0, ωi �∈ A

.

χ can be generalized to define a membership function of a fuzzy set Ã ⊆̃ Ω by µ
Ã
: Ω
→ [0, 1],

where µ
Ã
(ω) is the degree or extent to which ωi ∈ Ã. Each crisp set A is therefore special fuzzy

set Ã for which µ
Ã

= χA.
We can also identify fuzzy sets on the multidimensional universe X. A fuzzy subset of X is

called a fuzzy relation R̃ ⊆̃ X. Thus a normal relation R ⊆ X is also a special fuzzy relation.

4

A function ν: 2Ω
→ [0, 1] is a finite fuzzy measure if ν(∅) = 0 and ∀A,B ⊆ Ω, A ⊆ B →
ν(A) ≤ ν(B). The trace of a fuzzy measure ν is a function q ν : Ω
→ [0, 1] where ∀ωi ∈ Ω, q ν(ωi) :=
ν({ωi}). q ν is also the membership function of a fuzzy set.

Given ν and q ν , if in addition there exists an operator function ⊕: [0, 1]2
→ [0, 1], with ⊕
associative and commutative, such that ∀A ⊆ Ω, ν(A) =

⊕
ωi∈A q ν(ωi), then ⊕ is said to be a

distribution operator of ν and q ν its distribution.
f : Ω
→ [0, 1] is a probability distribution if

∑n
i=1 f(ωi) = 1. f induces a probability mea-

sure F : 2Ω
→ [0, 1], where ∀A ⊆ Ω, F (A) :=
∑

ωi∈A f(ωi). F is a fuzzy measure with distribution
operator ⊕ = +, and f = q+ its distribution. The traditional properties of probability measures
hold, in particular ∀A,B ⊆ Ω, F (A∪B) = F (A)+F (B)−F (A∩B). Also, since Ω is finite, denote
the probability distribution in vector form as �f = 〈fi〉 := 〈f(ωi)〉. The canonical measure of the
information content of a probability distribution is the classical stochastic entropy

H(�f) := −
n∑

i=1

fi log2(fi).

π: Ω
→ [0, 1] is a possibility distribution if ∨n
i=1π(ωi) = 1, where ∨ is the maximum opera-

tor. Similar to f , π induces a possibility measure Π: 2Ω
→ [0, 1], where now ∀A ⊆ Ω,Π(A) =∨
ωi∈A π(ωi). Π is a fuzzy measure with distribution operator ⊕ = ∨, and π = q∨. Unlike probabil-

ity, possibility measure have the “maxitive” possibilistic property such that ∀A,B ⊆ Ω,Π(A∪B) =
Π(A) ∨ Π(B). Again, since Ω is finite, denote the possibility distribution in vector form as
�π = 〈πi〉 := 〈π(ωi)〉. In possibility theory the nonspecificity measure

N(�π) :=
n∑

i=2

πi log2

(
i

i − 1

)
=

n∑
i=1

(πi − πi+1) log2(i),

where πn+1 = 0 by convention, is most well justified as the measure of the information content.

2.2 Distributions and Information Measures

In this method, we will use vectors of counts extensively. For the moment, define �c := 〈ci〉 , 1 ≤ i ≤
n, where ci ∈ W. We assume throughout that �c is non-vacuous, in other words that �c �= �∅.

Fuzzy relational representations of data sets can be very valuable. There are a number of
methods available to convert count vectors to fuzzy relations, and to convert amongst different
fuzzy relational forms.

Classically, probabilities are derived as relative frequencies according to

fi :=
ci∑n
i=1 ci

, (2)

although other formulae are available. Denote the tranform f(�c) = 〈fi〉 according to (2).
The standard method to derive a possibility distribution from either a count or a probability

distribution is according to

πi =
fi∨n

i=1 fi
=

ci∨n
i=1 ci

. (3)

Similarly denote the tranforms π(�c) = 〈πi〉 and π(�f) = 〈πi〉 according to (3).
For possibilities, there are also many alternate formulae available, with different justifications

[12, 21]. Joslynin particular has criticized (3) as trying to represent essentially probabilistic infor-
mation in an inappropriate possibilistic format [9]. We will demonstrate below that (3) is, indeed,
inadequate, although exploration of other possibilistic formulae will await further work.

5

For g ∈ {c, f, π}, define the core and support as

C(g) := {ωi ∈ Ω : g(ω) ≥ 1}, U(g) := {ωi ∈ Ω : g(ω) > 0}.

Clearly C(g),U(g) �= ∅, with C(g) ⊆ U(g). If C(g) = U(g), then either g = π or g is trivial with
|�c| = 1. Further, then g is a characteristic function χ. Thus subsets have a natural expression as
possibility distributions, but not as probability distributions.

It is well known that H is maximized at H(�f∗) = log2(|�f∗|) for the uniform probability dis-
tribution denoted �f∗ =

〈
1/|�f |∗, 1/|�f |∗, . . . , 1/|�f |∗

〉
; and miminzed at H(�f∗) = 0 for any �f∗ such

that ∃!i, f∗i = 1. Similarly, N is maximized at N(�π∗) = log2(|�π∗|) for the “uninformative” possi-
bility distribution denoted �π∗ = 〈1, 1, . . . , 1〉, and minimized at H(�π∗) = 0 for any �π∗ such that
∃!i, π∗i = 1. In general, if π is crisp then N(π) = log2(|U(π)|). Thus the classical information mea-
sure of the size of a subset A ⊆ Ω, which is log2(|A|), is essentially a (crisp) possibilistic measure
of information N(χU(A)).

Furthermore, by (2) and (3), π(�f∗) = �π∗, and for a uniform count vector denoted �c0 =
〈c0, c0, . . . , c0〉, for some c0 ∈ IN, f(�c0) = �f∗, π(�c0) = �π∗. Note also that then H(f(�c0)) =
N(π(�c0)) = log2(|U(�c0)|).

3 Projections and Extensions of Relations

3.1 State Spaces

Assume a subset of indices K ⊆ INM , called a projector, and let ¬K := INM −K. Where possible
without ambiguity, denote K as a simple list of its elements, for example K = 124 := K = {1, 2, 4},
or K = 10, 11, 12 := K = {10, 11, 12}.

Define the projection of the space X through K as X ↓ K = XK := ×
k∈K

Xk, which is the K

variables of X. Denoting k′ ∈ ¬K, then X ↓ K has corresponding projected state vectors

�x ↓ K = �xK :=
〈
xk

jk

〉
= �x − 〈xk′〉 ∈ X ↓ K,

which are the K variables of the �x.
Note that |�xK | = |K| ≤ M . Also, if ∃!i′ ∈ INM ,K = {i′}, then X ↓ K is just the collection of

“singleton” vectors
{〈

xi′
ji′

〉}
for all xi′

ji′ ∈ Xi′ . Then just denote X ↓ K := Xi′ .
More generally, assume two projectors K,K ′ ⊆ INM . Then the projection of X ↓ K again

through K ′ is just X ↓ (K ∩K ′). Thus we identify X = X ↓ INM , so that X ↓ K = X ↓ (INM ∩K).
Of course if K ∩ K ′ = ∅ then the projection is empty.

Now consider X ↓ (K ∪ K ′), and define this as the extension to K ′ of X ↓ K, denoted
(X ↓ K) ↑ K ′. Essentially this is just adding the K ′ variables back in to X ↓ K, so that

(X ↓ K) ↑ K ′ := X ↓ (K ∪ K ′) = (X ↓ K ′) ↑ K.

The extended vector
(�x ↓ K) ↑ K ′ := �x − 〈xl〉 , l ∈ ¬(K ∪ K ′)

is just the sub-vector of �x containing both the K and the K ′ variables. Here, if K ′ ⊆ K then the
extension is meaningless.

6

3.2 Relations

Now assume a relation R ⊆ X. Then the projection of the relation is very simply

R ↓ K := {�x ↓ K : �x ∈ R} = {�xK ∈ X ↓ K : �xK ↑ ¬K ∈ R} ⊆ X ↓ K.

Relational extension is a bit more involved. Consider a relation R ⊆ X and two projections K,K ′.
Then consider that we know R ↓ K ⊆ X ↓ K, and wish to construct the extension to K ′. It is
simple to define

(R ↓ K) ↑ K ′ := R ↓ (K ∪ K ′) = {�x′ ∈ (X ↓ K) ↑ K ′ : �x′ ↑ ¬(K ∪ K ′) ∈ R} ⊆ (X ↓ K) ↑ K ′.

But note that this defines (R ↓ K) ↑ K ′ in terms of R, the original relation. Therefore we call this
extension in context. In practice, we might be given only R ↓ K, which in general determines
neither R nor (R ↓ K) ↑ K ′. Instead we would normally define only the cylindrical extension,
denoted

(R ↓ K) ↑̂K ′ := (R ↓ K) × ×
i∈K ′

Xi.

In this paper we generally assume that it is possible to determine extensions in context.
In English, X ↓ K is just looking at X without the ¬K dimensions, and (X ↓ K) ↑ K ′ is just

adding back in the K ′ dimensions. Similarly, �x ↓ K is just the �x vector with the ¬K variables
removed, and (�x ↓ K) ↑ K ′ is just adding back in the K ′ variables. Similarly, the extension
in context (R ↓ K) ↑ K ′ is just the distinct vectors from R containing the K variables, and
(R ↓ K) ↑ K ′ adds back in the K ′ variables. By contrast, the cylindrical extension (R ↓ K) ↑̂K ′

assumes that each K-vector of R ↓ K is actually present in the extension together with all the
possible K ′-vectors.

More particularly, assume two projections K,K ′ with K ⊂ K ′. Given a particular state �xK ∈
X ↓ K, then define the state distribution of �xK to K ′ as

�xK ⇑ K ′ := {�xK ′ ⊇ �xK} = {�xK ′
: �xK ′ ↓ K = �xK} = {�xK ′

: �xK ↑ K ′ = �xK ′}. (4)

�xK ⇑ K ′ is thus the set of superstates of K ′ actually present in R which project through K to yield
�xK .

3.3 Example

As an example, let there be M = 3 dimensions, with X1 := {a, b, c},X2 := {x, y, z}, and X3 :=
{α, β}. Then the state space X is all the ordered triples of X1 × X2 × X3, and each state �x is one
of those triples.

Assume three projectors K = {1},K ′ = {1, 2},K ′′ = {1, 3}, so that K ′ ⊃ K ⊂ K ′′. The
projection of X through K is X ↓ K = X1, and the extension back to K ′ is (X ↓ K) ↑ K ′ =
X1 × X2 = X ↓ 12 = X ↓ K ∪ K ′.

Assume a relation R := {〈a, x, α〉 , 〈a, y, α〉 , 〈b, y, β〉}. Then its projection to K ′ is R ↓ 12 =
{x, y} ⊆ X2. The extension of R ↓ K in context to K ′′ is (R ↓ 1) ↑ 13 = R ↓ 13 = {〈a, α〉 , 〈b, β〉} ⊆
X1 × X3. But note that the cylyndircal extension is

R ↓ 1) ↑̂ 3 = (R ↓ 1) × X3 = {〈a, α〉 , 〈a, β〉 , 〈b, α〉 , 〈b, β〉}.

Fix a state �x = 〈a, x, α〉 ∈ R. Then the projection through K is �x1 = 〈a〉, and the state
distribution to K ′ is �x1 ⇑ 12 = {〈a, x〉 , 〈a, y〉}.

7

4 Databases

Define a data record as a collection �X := 〈�x1, �x2, . . . , �xN 〉 = 〈�xj〉 , j ∈ INN , a vector of obser-
vations �xj ∈ X. �X is usually represented tabularly as a matrix with N rows (data items) and
M columns (fields, dimensions). But since �X is a vector, it may have possibly duplicated obser-
vations �xi, �xi′ ∈ �X, �xi �= �xi′ . So it is always possible to define a corresponding multidimensional
bag (an unordered collection of multidimensional vectors with duplicates [23]), and from there a
multidimensional set (a relation).

Given �X, define:

• A counting function c:X
→ W|�X|, where c(�x) is the number of times that each record type

�x ∈ X has been observed in �X; and the vector form �c;

• The bag B := {〈�x, c(�x)〉};
• A support relation R ⊆ X, where

�x ∈ R ↔ c(�x) > 0; (5)

• And probability and possibility distributions f(�c) and π(�c) given by (2) and (3).

In English, the support relation R consists of those record types which have been observed at
least once in the collection �X. It is also the bag B stripped of both zero count records and all other
count information. Note that

∑
�x∈X c(�x) = N .

While the specific information encoded in each of these structures is different, their supports
are all equivalent to the support relation.

Corollary 6 U(c) = U(f) = U(π) = U(χR) = R

Proof: Follows from inspection of (2), (3), and (5).

Also, note that in typical information science applications, it is common to deal with scalar
variables, where, for example, Xi ⊆ IR. In this case, it would be very rare for ∃�x ∈ X, c(�x) > 1.
Our method would not be appropriate for such situations.

However, given a scalar variable, constructing a binned, intervally coarsened representation re-
sults in an ordinal dimension. Furthermore, scalar vectors are typically represented in relatively low
cardinality sets. For example, in financial applications, a quantity of money might be represented
as an integer in [0, 106]. Under these circumstances, this method would be highly appropriate.

4.1 Projection and State Distribution

Given a data record �X and a projector K, then it is natural to define:

• The projection of �X through K as �X ↓ K := 〈�xj ↓ K〉;
• The counting function cK :X ↓ K
→ W|�X↓K|, where cK(�xK) is the number of times that each

projected record type �xK ∈ X ↓ K has been observed in the projected data record �X ↓ K;
and vector form �cK ;

• The bag B ↓ K :=
{〈

�xK , cK(�xK)
〉}

;

8

• The relation RK = R ↓ K ⊆ X ↓ K := {�xk : cK(�xK) > 0}; and

• Probability and possibility distributions fK := f(�cK) and πK := π(�cK) also given by (2) and
(3).

We recognize projections of probabilities and counts as producing marginal distributions. Mar-
ginal counts and probabilities are both additive over their state distributions, and thus this addi-
tivity is preserved for probabilities derived from projected counts. On the other hand, marginal
possibility distributions are defined using the maximum operator. And while this maximality is
preserved for support relations (whose characteristic functions are, afer all, possibility distributions)
which are derived from additively projected counts, for general possibility distributions this is not
the case. This is a fundamental critique of possibility distributions derived from (3).

Theorem 7 Assume �X and K ⊂ K ′. Then ∀�xK ∈ X ↓ K

1. cK(�xK) =
∑

�yK′∈�xK⇑K ′ cK ′
(�yK ′

)

2. fK(�xK) =
∑

�yK′∈�xK⇑K ′ fK ′
(�yK ′

)

3. χK
R (�xK) =

∨
�yK′∈�xK⇑K ′ χK ′

R (�yK ′
)

4. πK(�xK) �= ∨
�xK′∈�xK⇑K ′ πK ′

(�xK ′
)

Proof:

1. Since K ⊂ K ′, therefore ∀�x ∈ X ↓ K,�y ∈ X ↓ K ′, �x ⊆ �y. Thus for each �xK , for the
observations �xj ∈ �X for which �xK

j = �xK , it must also be that ∃!�yK ′ ∈ X ↓ K ′, �xK ′
j ↓ K = �yK ′

.
Thus the counts cK(�xK) must be completely accounted for in the counts of the cK ′

(�yK ′
), and

the conclusion follows.

2. From (2) and 1. above,

fK(�xK) =
cK(�xK)∑

�zK∈X↓K cK(�zK)
=

∑
�yK′∈�xK⇑K ′ cK ′

(�yK ′
)∑

�zK∈X↓K
∑

�yK′∈�zK⇑K ′ cK ′(�yK ′)
=

∑
�yK′∈�xK⇑K ′

cK ′
(�yK ′

)∑
�wK′∈X↓K ′ cK ′(�wK ′)

=
∑

�yK′∈�xK⇑K ′
fK ′

(�yK ′
)

3. �xK ∈ RK iff ∃�yK ′ ∈ (�yK ⇑ K ′), �yK ′ ∈ RK ′
, and so the conclusion follows.

4. For a counterexample, see (11) in Sec. 4.3.

4.2 Subsetting

Assume a data record �X, and a subset of indices on the observations Y ⊆ INN . Then define the
subsetted data record as �X(Y) :=

〈
�xlj

〉
⊆ �X,∀lj ∈ Y . Where possible without ambiguity,

denote this as �Y.
Where projecting reduces the number of columns of the database, subsetting reduces the number

of rows. These can be combined, considering the subsetted database �Y being projected through
the K dimensions. Thus denote a database proper as a system D(Y,K) := �Y ↓ K, or just D
without ambiguity.

Given a database D, then it is natural to define:

9

• The counting function cK,Y :X ↓ K
→ W|�Y↓K|, where cK,Y (�xK) is the number of times that

each projected record type �xK ∈ X ↓ K has been observed in the database �Y ↓ K; and vector
form �cK,Y ;

• The bag BY ↓ K :=
{〈

�xK , cK,Y (�xK)
〉}

;

• The relation RK,Y ⊆ X ↓ K := {�xk : cK,Y (�xK) > 0}; and

• Probability and possibility distributions fK,Y := f(�cK,Y) and πK,Y := π(�cK,Y) also given by
(2) and (3).

Unlike projections, not only are probabilities additively normal, but possibilities are also max-
imally normal, over subsets.

Theorem 8 ∀�xK ∈ D,

1. cK,Y (�xK) =

{
cK(�xK), �xK ∈ �Y ↓ K
0, otherwise

.

2. fK,Y (�xK) = fK(�xK)∑
�yK∈D fK(�x′K)

.

3. πK,Y (�xK) = πK(�xK)∨
�yK∈D πK(�x′K)

.

Proof:

1. Obvious.

2. Because �xK ∈ D, from 1. above

fK,Y (�xK) =
cK,Y (�xK)∑

�yK∈X↓K cK,Y (�yK)
=

cK(�xK)∑
�y∈D cK(�yK)

=

cK(�xK)∑
�zK∈D cK(�zK)∑

�yK∈D
cK(�yK)∑

�zK∈D cK(�zK)

=
fK(�xK)∑

�yK∈D fK(�yK)
.

3. By similar reasoning,

πK,Y (�xK) =
cK,Y (�xK)∨

�yK∈X↓K cK,Y (�yK)
=

cK(�xK)∨
�y∈D cK(�yK)

=

cK(�xK)∨
�zK∈D cK(�zK)∨

�yK∈D
cK(�yK)∨

�zK∈D cK(�zK)

=
fK(�xK)∨

�yK∈D fK(�yK)
.

While Y can be specified arbitrarily, in this method we do so only with respect to the states xK

of some projection X ↓ K. In particular, assume a data record �X, two arbitrary projectors K,K ′,
and a particular state �xK in the K space. Then define

[�xK] := {j ∈ INN : �xj ↓ K = �xK},

so that
D([�xK],K ′) =

〈
�xK ′

j : �xK ′
j ↓ K = �xK

〉
⊆ �X ↓ K ′.

In other words, D([�xK],K ′) is the database derived by considering the projection through the K ′

variables of all the data vectors which have the value of �xK on the K variables.

10

�x
X3 X2 X1 c(�x) f(�x) π(�x) χR(�x)
α x a 1 0.02 0.05 1

b 0 0.00 0.00 0
c 8 0.16 0.40 1

y a 4 0.08 0.20 1
b 3 0.06 0.15 1
c 0 0.00 0.00 0

β x a 8 0.16 0.40 1
b 0 0.00 0.00 0
c 20 0.40 1.00 1

y a 4 0.08 0.02 1
b 2 0.04 0.10 1
c 0 0.00 0.00 0

Table 1: Example database bag and distributions.

In particular, if K ⊂ K ′, then D(�xK ,K ′) is the database derived by taking just the data records
equal to �xK on the K variables, and distributing them over the K ′ variables. Just as (when K ⊂ K ′,
by (4)) the states �xK can be distributed to the K ′ variables with the state distribution �xK ⇑ K ′, so
the �xK can be seen as partitioning the projected and subsetted data record �Y ↓ K ′ into subvectors
consisting of those data records �xK ′

j equal to �xK on the K variables. Thus they form a “disjoint
cover” in the vector sense.

Theorem 9 Assume a database D([�xK],K ′), with K ⊂ K ′, and let �yK ′ ∈ �xK ⇑ K ′. Then
the vector of subsetted data records

〈
�X([�yK ′

])
〉
, paramaterized by the �yK ′

, is a partition of the

subsetted data record �X([�xK]).

Proof: Since �yK ′ ∈ �xK ⇑ K ′, therefore �yK ′ ↓ K = �xK . Therefore ∀�xj ∈ �X([�xK]),∃�yK ′
, �xj ∈ �yK ′

.
Furthermore, this is unique, since each �yK ′

maps to a unique vector in X ↓ K ′. This satisfies (1).

Corollary 10 Under the assumptions from (9), cK(�xK) =
∑

�yK′∈�xK⇑K ′ cK ′
(�yK ′

).

Proof: Follows immediately from (9).

4.3 Example

To introduce a similar example to that from Sec. 3.3, let let N = 50 and M = 3, with X1 :=
{a, b, c},X2 := {x, y}, and X3 := {α, β}. Assume a data record �X is given, but it is very difficult
to show this explicitly. Instead, we derive ∀�x ∈ X, c(�x), and use the more efficiently represented
database bag B := {〈�x, c(�x)〉}, along with f(�c), π(�c), and χR(�x).

The overall bag and distribution functions are shown in Tab. 1. The projections ∀∅ �= K ⊂
{X1,X2,X3} are then shown in Tab. 2.

As an example of (7), let K = {2},K ′ = {2, 3}. Then

13 = c2(〈y〉) =
∑

�x23∈{〈y,α〉,〈y,β〉}
c23(�x23) = 7 + 6

11

�x12

X2 X1 c12 f12 π12 χ12
R

x a 9 0.18 0.32 1
b 0 0.00 0.00 0
c 28 0.56 1.00 1

y a 8 0.16 0.29 1
b 5 0.10 0.18 1
c 0 0.00 0.00 0

�x13

X3 X1 c13 f13 π13 χ13
R

α a 5 0.10 0.25 1
b 3 0.06 0.15 1
c 8 0.16 0.40 1

β a 12 0.24 0.60 1
b 2 0.04 0.10 1
c 20 0.40 1.00 1

�x23

X3 X2 c23 f23 π23 χ23
R

α x 9 0.18 0.32 1
y 7 0.14 0.25 1

β x 28 0.56 1.00 1
y 6 0.12 0.21 1

�x1

X1 c1 f1 π1 χ1
R

a 17 0.34 0.61 1
b 5 0.10 0.18 1
c 28 0.56 1.00 1

�x2

X2 c2 f2 π2 χ2
R

x 37 0.74 1.00 1
y 13 0.26 0.35 1

�x3

X3 c3 f3 π3 χ3
R

α 16 0.32 0.47 1
β 34 0.68 1.00 1

Table 2: Projected database bags.

0.26 = f2(〈y〉) =
∑

�x23∈{〈y,α〉,〈y,β〉}
f23(�x23) = 0.14 + 0.12,

but

0.35 = π2(〈y〉) =
c2(〈y〉)∨

�x′∈X↓23 c23(�x′)
=

13
37 ∨ 13

�=
∨

�x23∈{〈y,α〉,〈y,β〉}
π23(�x23) = 0.25 ∨ 0.21 = 0.25. (11)

Consider the �xK in �X ↓ K = {〈x〉 , 〈y〉}. The bags corresponding to the D([�xK],K ′) are given
in Tab. 3. As an example of (9),

cK(〈x〉) =
∑

�yK′∈〈x〉⇑K ′
cK ′

(�yK ′
) =

∑
�yK′∈{〈α,x〉,〈β,x〉}

cK ′
(�yK ′

) = 9 + 28.

5 Structural Measures Over Extended Subsets

Assume a database D, a state �xK ∈ X ↓ K, and a new projector K ′ ⊃ K. Then �xK ⇑ K ′ represents
the actual division within the database of the cK(�xK) data points equal to �xK on the K variables
to all the vectors �xK ′ ∈ RK ′

containing the original vector �xK .

5.1 Count Distributions

In particular, for a fixed �xK , let C := cK(�xK) be the number of records in �X equal to �xK over the K
variables. We are concerned with how these C data records are distributed over the superstates of
�xK ⇑ K ′. Construct the count distribution �C(�xK ,K ′) := 〈Cl〉, where 1 ≤ l ≤ γ := | �C(�xK ,K ′)| ≤

12

�x23

X3 X2 c23,〈x〉 f23,〈x〉 π23,〈x〉 χ
23,〈x〉
R

α x 9 0.24 0.32 1
β x 28 0.76 1.00 1

�x23

X3 X2 c23,〈x〉 f23,〈x〉 π23,〈x〉 χ
23,〈x〉
R

α y 7 0.54 1.00 1
β y 6 0.46 0.86 1

Table 3: Subsetted database bags.

C, where ∀Cl ∈ �C,∃�xK ′ ∈ �xK ⇑ K ′ such that Cl := cK ′
(�xK ′

) and Cl > 0. Where possible without
ambiguity, denote �C := �C(�xK ,K ′).

In other words, �C is constructed just as a collection of all the positive counts of the superstates
in the state distribution of �xK . Since �C is determined only to a permutation, if we need to determine
�C uniquely, we will choose it to be decreasing. Given �C, then �f and �π are available from (2) and
(3).

We are therefore concerning ourselves now with a combinatorial problem: given C elements,
how can they be divided up over some new category? From (9), we know that

∑γ
l=1 Cl = C. But

otherwise, in general there are two extremes. On the one hand, they can all be in one state of the
new category, so that �C = 〈C〉, and γ = 1. On the other, they can all be in different states of the
new category, so that �C = 〈1, 1, . . . , 1〉, and γ = C. Note that γ = | �C| ∈ INC is only bounded by C,
and not determined by it.

This problem is equivalent to grouping elements of the partition lattice of C items homomor-
phically by their size [2, pp. 15-16]. The resulting structure is a poset with unique maximal and
minimal elements �C∗ := 〈C〉 and �C∗ := 〈1, 1, . . . , 1〉 respectively. Denote this poset as Γ(C) for a
given C, with the partial ordering ≤. Γ(8) is shown in Fig. 1.

5.2 Structural Measures

We are interested in determining the amount of structure represented by a given count distribution
�C ∈ Γ(C) of some initial group of C records. Begin by making a number of explicit assumptions:

1. There are enough states in the K ′ space that the C observations could be reasonably spread
out over them. In particular, |X ↓ K ′| � C.

2. One would normally expect observations to be reasonably well spread over the K ′ states.

Given these assumptions, then we can we recognize �C∗ as having maximal structure: all the
data points are grouped into the same value in the new category, which is not expected. Similarly,
we recognize �C∗ as having minimal structure: all the data points are in distinct categories, which
is expected. So we wish to order the various �C ∈ Γ(C) by their amount of structure, denoting this
as a new ordering �.

We need to consider how ≤ compares to �. In particular, we have �C∗ � �C∗, and also �C∗ ≤ �C∗.
But from examining the structure of Γ, it seems unlikely that � should be a linear ordering. As an
example, let C = 8, and consider

�C1 = 〈4, 4〉 , �C2 = 〈7, 1〉 , �C3 = 〈4, 2, 1, 1〉 .

13

Figure 1: Γ(8). Left side: Each node in the poset, showing �C,N(�C), G(�C), Qavg(�C), and Q×(�C)
according to the key at the upper left. Right side: γ(�C) and κ(�C) for each level of Γ(8).

14

Clearly �C1 � �C2, because while for both the C counts are split into two groups, they would be
expected to be evenly divded as in �C1, and not as in �C2. Similarly �C1 � �C3, since we expect the
C to be divided into more, rather than fewer, categories. But in both these cases, the sets are
noncomparable by ≤. But �C2 and �C3 appear non-comparable by �, since here both factors come
into play, despite the fact that �C3 ≤ �C2.

Thus we assert that:

1. � is relatively independent of ≤.

2. We can recognize in the posets a two dimensional structure. On the one hand, Γ(C) has C
levels, each corresponding to a different γ ∈ INC . On the other hand, for a given γ, there are
a variety of possible states, ranging from the maximally to the minimally uniform.

We therefore introduce two independent summary statistics to measure the structure of a given
�C:

Group-Relative Entropy: Notice that within each γ level of Γ(C), �C varies from maximally
uniform on the right, to maximally non-uniform on the left. The first measure of Γ(C)
measure this as an entropy. f(�C), considered as a function of �C, is a probability distribution
whose length varies with γ between the levels of Γ(C). Therefore, we need to define

G(�C) :=
H(f(�C))
log2(γ)

=
H(f(�C))

log2(| �C|) (12)

as a group-relative entropy. Note that since γ varies from 1 to C, the normalizing factor is
not a function of the initial count C. However, within each γ level, G(�C) varies within [0, 1],
where by convention we assign G(�C∗) := 0. G(�C) = 1 for any uniform count distribution (in
other words, once for each γ �= 1 which is a factor of C).

Compression: The other measure of Γ(C) is related strictly to the level γ. Define

κ(�C) :=
log2(γ)
log2(C)

=
log2(| �C|)

log2

(∑| �C|
l=1 Cl

)
to measure the level γ at which �C exists within Γ(C).

We interpret κ(�C) as the amount of “compression” which the C elements undergo in their
distribution. In other words, if we expect �C = �C∗, and | �C∗| = C, but | �C| is actually γ(�C),
then κ(�C) measures the amount of our surprise.

We can also interpret κ(�C) as a relative crisp nonspecificity. Let (�xK ⇑ K ′)∗ be any “maximal”
state distribution of �xK to K ′, so that |(�xK ⇑ K ′)∗| = C. Then

κ(�C) =
N(χU(�xK⇑K ′))

N(χU((�xK⇑K ′)∗))
.

Thus κ measures the relative crisp nonspecificity of the size of the support of the grouped
count distribution to the size of the support of the original count distribution.

Notice that we define κ as a log ratio, rather than a simple ratio. The effect, as shown in
Fig. 2, for C = 100, is to deemphasize smaller amounts of compression.

15

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
κ(γ), γ/C, for C = 100

γ

κ(
γ)

 (
up

pe
r)

; γ
/C

 (
lo

w
er

)

Figure 2: For C = 100: above: κ(�C); below: γ
C .

Group-Relative Nonspecifcity: Finally, we need to introduce a general (non-crisp) possibilistic
measure. Similar to (12), the group-relative nonspecificity for π determined by (3) is

N(�C) :=
N(π(�C))
log2(γ)

. (13)

However, we will demonstrate below that N has no natural interpretation in the context of
Γ(C), and will therefore deal generally only with κ and G below.

Both κ and G yield zero values for high structure and unity for low structure. This is coincident
with classical information theory, where high information content or enropy indicates randomness,
or lack of structure. Both also yield intermediate values for intermediate degrees of structure, but
for structure of different kinds.

Proposition 14

1. ∀ �C, κ(�C), G(�C), N(�C) ∈ [0, 1].

2. κ(�C) = 0 ↔ G(�C) = 0 ↔ N(�C) = 0 ↔ �C = 〈C〉.
3. κ is constant for fixed γ, and increases with γ.

4. κ(�C) = 1 ↔ �C = 〈1, 1, . . . , 1〉.
5. For fixed γ, G increases to the right of the diagram of Γ.

6. G(�C) = 1 ↔ ∃c0, �C = �c0.

While we asserted that � is at best a partial ordering with respect to G and κ, it is not
unreasonable to search for a single measure with a linear order over Γ(C). Therefore define a hybrid
cross-aggregation measure Q⊕(�C) := κ(�C) ⊕ G(�C), where ⊕ is some appropriate operator, for
example ⊕ ∈ {+,×,∧,∨}, or average. Below we will work with Qavg and Q×.

16

The values of κ,N,G,Qavg, and Q× are shown for Γ(8) in Fig. 1.
A display of κ vs. G for Γ(8) is shown on the left side of Fig. 3. The solid line traces the �C

through Γ(8), from left to right within each γ level. Note the level structure of the γ with constant
κ which is revealed, with G moving uniformly within each level. A display of κ vs. N for Γ(8) is
shown on the right side of Fig. 3, with the same solid line trace. Note that the level now is much
more confused, revealing no uniform structure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G(C)

κ(
C

)

G(C) vs. κ(C) for Γ(8)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N(C)

κ(
C

)

N(C) vs. κ(C) for Γ(8)

Figure 3: Points correspond to specific elements of Γ(8). Left: G(�C) vs. κ(�C). Right: N(�C) vs.
κ(�C).

Other interesting comparisons are shown in Fig. 4, which shows Q×(�C) and Qavg(�C) against
κ(�C) respectively. It is clear that Q× is superior, although even in this case there no linear ordering
results. In particular, Q×(〈3, 3, 2〉) = .520 > Q×(〈5, 1, 1, 1〉) = .516, despite the fact that while
〈3, 3, 2〉 is slightly more compressed that 〈5, 1, 1, 1〉, it is substantially more uniform.

But note that

Q×(�C) = G(�C)κ(�C) =
H(f(�C))
log2(C)

,

which is the non-group, or normal, relative entropy. This is based on the constant normalization
based on the assumption that f should have the support of size C (one position for each count of �C),
rather than the variable γ (one position for each group into which the counts of �C are distributed).

5.3 Example

Continuing our example from above, let K = {3},K ′ = {1, 3}, and �x = 〈α〉, so that �xK ⇑ K ′ =
{〈a, α〉 , 〈b, α〉 , 〈c, α〉}. Then

�C = 〈5, 3, 8〉 , �f = 〈0.31, 0.19, 0.50〉 , �π = 〈0.38, 0.63, 1.00〉

C = 16, γ = 3, H(�f) = 1.48, N(�π) = 1.44

κ(�C) = 0.396, G(�C) = 0.932, N(�C) = 0.908, Qavg(�C) = 0.664, Q×(�C) = 0.369.

17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q×(C)

κ(
C

)

Q×(C) vs. κ(C) for Γ(8)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Qavg(C)

κ(
C

)

Qavg(C) vs. κ(C) for Γ(8)

Figure 4: Points correspond to specific elements of Γ(8). Left: Q×(�C) vs. κ(�C). Right: Qavg(�C)
vs. κ(�C).

6 Method

The proposed deep method works iteratively at two different levels: “dimensional exploration” of
different projections of the database; and “cardinal exploration” of different subsets of the database.
At each step, a database Dt+1 is derived from the prior Dt.

6.1 Database Operations

Given a database D = D(Y,K), and a new projector K ′, denote the extension of D to K ′ as
D ↑ K ′ := D(Y,K ∪ K ′); and the projection through K ′ as D ↓ K ′ := D(Y,K ∩ K ′). Similarly,
given a new subsetter Y ′, denote the restriction of D to Y ′ as D ∩ Y ′ := D(Y ∩ Y ′,K); and the
expansion of D to Y ′ as D ∪ Y ′ := D(Y ∪ Y ′,K).

Assume a data record �X, and denote an initial database as D0 := D(INN , INM). Assume a
sequence of time steps t ∈ W with an initial time t = 0. At each time t assume the existence of a
projector Kt ⊆ INM and a subsetter Y t ⊆ INN . Denote the database at time t as Dt := D(Y t,Kt),
or in bag form as

Bt :=
{〈

�xKt,Y t
, cKt,Y t

(�xKt,Y t
)
〉}

.

Dimensional Exploration: It may be desirable to derive Dt+1 by either projecting or extending
Kt, leaving Y t unchanged. Assume a new projector K ′. There are then three cases:

1. If K ⊥ K ′ := K ∩ K ′ = ∅, then Dt+1 = Dt ↑ K ′.

2. If K ⊆ K ′, then Dt+1 = Dt ↓ K ′.

3. Otherwise K and K ′ “properly overlap”, in that K �⊥ K ′, but also K �⊆ K ′,K ′ �⊆ K.
Then Dt+1 can be either Dt ↓ K or Dt ↑ K.

Cardinal Exploration: It may be desirable to derive Dt+1 by either restricting or expanding Y t,
leaving Kt unchanged. Assume a new subsetter Y ′. There are again three cases:

18

1. If Y ⊥ Y ′, then Dt+1 = Dt ∪ Y ′.

2. If Y ⊆ Y ′, then Dt+1 = Dt ∩ Y ′.

3. Otherwise Y and Y ′ properly overlap, so that Dt+1 can be either Dt ∪ Y ′ or Dt ∩ Y ′.

At each time t, assume that either a subsequent projector Kt+1 or subsetter Y t+1 is provided,
and denote the operation performed on the prior database as one of Kt ↓,Kt ↑, Y t ⊆, Y t ⊇ for
projection, extension, restriction, and expansion respectively.

6.2 General Method

We have now assembled the tools necessary to apply these concepts in a methodical way. The
overall goal is to find localized regions of high structure, that is databases with specific subsets
and projections which have low structural and/or cross-aggregation measures. Specifically what
is required is to explore various K and Y (specified in terms of various [�xK]) by applying the
operations above.

The central idea is the following. Assume a particular database Dt. We desire to find a particular
subset Y t+n ⊆ Y t of interest for some n ∈ wholes. If we are given a Kt+1, then for each projected
state present in Dt, construct its state distributions extended to Kt+1, and select that state with
minimal structural or cross-aggregation measure. If we are not given a Kt+1, then it should be
selected from all the individual dimensions not present in Kt as that with minimal structural score.

In practice, we will operate with the restriction that ∀t,Kt = {kt} for some kt ∈ INM . In other
words, initially we will focus on a single variable, and then move to project or extend only by one
variable at a time.

Furthermore, the various K ′ and [�xK] can be derived from multiple sources, depending on the
particular context. Sometimes heuristic or expert knowledge directs our attention to certain K and
Y . Other times a systematic or random search is required. Finally, there are many mixed cases.
Furtheremore, expert domain knolwegde may also be needed to interpret the structural measures.

Based on various field typology, the natural distribution of the data, the semantics of the
differing fields, and the adherence to the assumptions from Sec. 5.2, high or low values of various
measures might either be or not be expected. Finally, implementations might be made in either the
front-end of systems, where user selection of K and Y can be allowed, or in the back-end, where
pre-programming will be required.

So depending on the particular context, the central idea above can be supplemented by iterated
applications of extension and subsetting, or complemented by further actions supersetting and
projection.

6.3 Examples

We proceed by showing a number of examples.

6.3.1 Programmatic Example

First we illustrate the database operations in a simple example. Let M = 2,X1 = {a, b, c},X2 =
{x, y, z}. The contingency table of the c(�x) is shown in Fig. 5. Consider that the series of database
operations shown in Tab. 4 is carried out, which is also illustrated in Fig. 5. For each step,
Tab. 4 describes the operation, the operand, and the resulting database, in bag form. Note the
programmatic nature of this example: given the series of Kt, Y t, these steps can be carried out in
an algorithmic manner.

19

Description Operand Result
Initial state D0 = D(INN , INM)
Project to X1 K1 = {1} D1 = D0 ↓ K1 = {〈〈x〉 , 22〉 , 〈〈y〉 , 10〉 , 〈〈z〉 , 14〉}
Subset to �x2 = 〈y〉 Y 2 = [〈y〉] D2 = D1 ∩ Y 2 = {〈〈y〉 , 10〉}
Extend back to
{X1,X2}

K3 = {1, 2} D3 = D2 ↑ K3 = {〈〈a, y〉 , 3〉 , 〈〈b, y〉 , 7〉}

Subset to �x12 = 〈a, y〉 Y 4 = [〈a, y〉] D4 = D3 ∩ Y 4 = {〈〈a, y〉 , 3〉}
Project to X2 K5 = {2} D5 = D4 ↓ K5 = {〈〈a〉 , 3〉}
Expand to records
matching �x1 = 〈a〉

Y 6 = [〈a〉] D6 = D5 ∪ K6 = {〈〈a〉 , 9〉}

Table 4: A programmatic example.

Figure 5: Illustration of the programmatic example.

20

i �ci G(�ci) κ(�ci) Qavg(�ci) Q×(�ci)
1 〈17, 5, 28〉 0.839 0.281 0.560 0.236
2 〈37, 13〉 0.827 0.177 0.502 0.147
3 〈34, 16〉 0.904 0.177 0.541 0.160

Table 5: Initial candidate projections of continuing example.

K ′ �xK �c(�xK ⇑ K ′) G(�c) κ(�c) Qavg(�c) Q×(�(c))
{1} 〈x〉 〈9, 28〉 0.800 0.192 0.496 0.154

〈y〉 〈8, 5〉 0.961 0.270 0.616 0.260
{3} 〈x〉 〈9, 28〉 0.800 0.192 0.496 0.154

〈y〉 〈7, 6〉 0.996 0.270 0.633 0.269

Table 6: Candidate subsets of continuing example.

6.3.2 Continuing Example

Our continuing example has been very useful so far, providing a simple illustration of these princi-
ples. However, at this point while it is still useful for simple calculations, it does not very accurately
reflect real data. That is because:

• The size of the universe of discourse is small, with n = |X| = 12. Thus assumption 1 on page
13 is not met. This results in unexpectedly small values of κ.

• The items are relatively uniformly distributed, resulting in unexpectedly large values of G.

Nevertheless, for demonstration purposes it is still worth pursuing this example.
In this case, D0 is given in Tab. 1, and we proceed by letting the initial projection be for that

variable with the minimum cross-aggregation measure, for some Q⊕:

K1 := arg min
Xi∈X

Q⊕(�ci), D1 := D0 ↓ K1.

The structural measures and the cross-aggregation measure for ⊕ = average and ⊕ = × are
shown in table Tab. 5. Based on this criteria, we would select K1 = {2}, and then construct the
extensions of �X ↓ 2 = {〈x〉 , 〈y〉} to both K ′ = {1} and K ′ = {3}. These are given in Tab. 6. This
would then lead us to select �x1 = 〈x〉 as the first subset.

6.3.3 Application Example

deep was deployed in the IRS fraud detection project at the Los Alamos National Laboratory. In
this case we identified three scalar variables which domain experts indicated were of high interest,
which we will denote here as K = {1, 2, 3}. These were actually integer amounts, and it was
feasilble to treat them as nominal variables. We then subsetted groups of records where G(cK) =
κ(cK) ≤ 0.1, that is, where groups were identical, or nearly so, with respect to the K variables.

While our domain experts indicated that these data points were of interest, and the subsets
selected were very small with respect to the entire database, nevertheless there were still both far
too many groups and far too many data points to be considered further. Instead, further variables
denoted K ′ = {4, 5, 6, 7} were identified, and the �xK distributed along the i ∈ K ′ individually.
Those �xK having mink′∈K ′ M(ck′

) were further selected, and proved to be very helpful to our
clients.

21

7 Application to Fraud Detection

7.1 Supervised: ”chaining”

Overlapping entities of orthogonal aggregators
Adjecent, linked entities of the same aggregator

7.2 Unsupervised

7.3 Variable selection

Preselected
User-guided

7.4 Relation to Ping-pong, etc.

8 Implementation

The deep methodology was deployed in the winter and spring of 1997 in the IRS Fraud Detection
Project at the Los Alamos National Laboratory (LANL). This project operates on a large Oracle
sql database jointly between LANL the Cincinatti Service Center (CSC) of the IRS.

Implementation was made in a number of ways:

• In experimental Matlab code;

• Hard-coded into a back-end data analysis module;

• Within an interactive, graphical, data mining environment called VisTool.

As a generator of summary statistics, the deep method is, of course, highly sensitive to field
selection, subset selection, data typing, and binning of scalar data. All of these must be specified
by expert knowledge. This was done by a priori selection in the backend implementation, which
is described first. The front end implementation is actually much more in keeping with the deep
methodology, as it allows interactive, user-guided exploration of the spaces of projections and
subsets. It will be described later, in the context of a proposed sql extension to support generation
of distributions and cross-aggregation statistics.

8.1 Backend Implementation

Referring again to the example described in Sec. 6.3.3, we are reminded that we used three scalar
fields K := {1, 2, 3}, which were identified as nominal variables by being treated as integers. These
were then supplemented by additional fields K ′ := {4, 5, 6, 7}, which were true nominals to begin
with.

Code was written in the ProC sql code-generation language to construct a hybrid C/sql
program for analysis of data as it entered the system. Inputted records were projected into K,
and the bag BK constructed and stored in Oracle tables. For each entry k�x ∈ BK , the state
distributions k�x ⇑ K ∪ {i′} were then constructed ∀i′ ∈ K ′. Denoting �xK := k�x, the values of

cK(�xK), �CK ′
:= �C(�xK ,K ′), κ(�CK ′

), G(�CK ′
), Qavg(�CK ′

), Q∧(�CK ′
)

were then also stored in the database.

22

In this trial, various experimental combinations of values were explored, in an attempt to find
small subsets of records with a high level of interest. These groups were then automatically made
available to the clients. Experimental variation included:

• Finding an appropriately low values of Q∧ which would prove interesting.

• Experimenting with K ⊆ {1, 2, 3}.
• Experimenting with various ways in which K ′ ∩ K �= ∅, either by putting elements of K in

K ′, or vice versa.

8.2 SQL Extension and VisTool Spreadsheets

We now describe the front-end implementation by introducing a proposed extension to sql to allow
the creation of distributions and cross-aggregation statistics on them. Complete extended queries
are of the form:

SELECT [KS,] [agg(KA),] [DIST(KD
1), DIST(KD

2), . . .]
FROM T
WHERE C
GROUP BY KG

In the following subsections, we will build up this query form incrementally, at each stage show-
ing the relation to our database notation, and how they are implemented in VisTool spreadsheets.

8.2.1 Non-Grouped Queries

There are one to one mappings among the non-extended, non-grouped sql queries, our database
notation, and VisTool spreadsheets.

Assume a query “SELECT KS FROM T WHERE C”, where

• T = {t} is a set of table names, and its use in the query is to be interpeted as the insertion
of that list of table names;

• dom(t) is a list of the field names in t, corresponding to our dimensions Xi;

• The overall set of available fields is X := ∪t∈T dom(t), with M := |X |;
• Each of the K · is a projector from X , and their use in the query is to be interpreted as the

insertion of the corresponding field names;

• KS is called the selection projector;

• Denote K := KS (this will be useful in another way below);

• C is a condition of the form exp(KC), where:

– exp is some appropriate expression; and

– KC ⊆ INM .

Construct D = D(Y,K) = �Y ↓ K as follows:

• The data record is �X = 〈�xi〉, where each �xi is a line of the output of the query “SELECT *
FROM T”;

23

• M is the result of the query “SELECT COUNT(*) FROM T”;

• Y is the set of indices in INM of those rows whose �xj satisfy C, and �Y is the corresponding
sub-vector of �X;

• And K is defined above.

Construct the VisTool spreadsheet as follows:

• There will be one column for each i ∈ KS;

• There will be one row for each j ∈ Y ;

• The �xj are displayed in the rows.

Call this form of spreadsheet a detailed spreadsheet.

8.2.2 Grouped Queries

Now extend this to a standard grouped query of the form:

SELECT KS, agg(KA)
FROM T
WHERE C
GROUP BY KG

where now:

• agg is an aggregation function, such as SUM, AVG, MIN, MAX, etc.;

• KA is called the aggregation projector, with KS ∪ KA �= ∅;
• KG is called the grouping projector, with KG ⊇ KS ;

• And now denote K := KS ∪ KG = KG.

D is modified appropriately as K is here.
For the VisTool spreadsheet, call any spreadsheet generated by a GROUP BY expression an

aggregated spreadsheet, constructed as follows:

• Where a detailed spreadsheet is defined on the data record �Y, and thus has one row for each
j ∈ Y , an aggregated spreadsheet is defined on the data bag BY ↓ K, and thus has one row
for each k ∈ INQ, where we are reminded that in the data bag

1 ≤ k ≤ Q := |BY ↓ K| = |RK,Y | ≤ N.

Thus one line of output is produced for each distinct tuple �xK of the projector K in the join
of the t ∈ T .

• In the aggregated spreadsheet, there is one column for each i ∈ KS and distinctly for each
i ∈ KA, where the aggregated data are displayed.

24

�x23

X3 X2 c23 �C κ(�C) G(�C) Q×(�C)
α x 9 〈8, 1〉 0.316 0.503 0.159

y 7 〈4, 3〉 0.356 0.985 0.351
β x 28 〈20, 8〉 0.208 0.863 0.180

y 6 〈4, 2〉 0.387 0.918 0.355

Table 7: Example extended sql output.

8.2.3 Extended, Grouped Queries

Finally, continue to an extended group query using a proposed extension to sql to allow the creation
of distributions and cross-aggregation statistics on them. The extension is of the form:

SELECT KS, agg(KA), DIST(KD
1), DIST(KD

2), . . .
FROM T
WHERE C
GROUP BY KG

where the KD
i are projectors called extenders, and ∀KD

i ∩ KS = ∅. Denote K :=
⋃

KD
i . An

extended aggregated spreadsheet is constructed by showing on each line, and ∀K ′ ∈ K, infor-
mation for

cK(�xK), �CK ′
:= �C(�xK ,K ′), κ(�CK ′

), G(�CK ′
), Q×(�CK ′

),

8.2.4 Examples

Considering the example in Sec. 4.3, let t be the table shown in Tab. 1, and consider the query:

SELECT X2,X3, DIST(X1)
FROM t
GROUP BY X2,X3

Output displayed in the VisTool spreadsheet would be as shown in Tab. 7. According to κ alone,
the state �x2,3 = 〈x, β〉 ∈ X ↓ {2, 3} would be selected as that with the most structure, whereas
according to both G and Q×, 〈x, α〉 would be.

Then consider the query

SELECT X2, DIST(X1), DIST(X3)
FROM t
WHERE X2 = y
GROUP BY X2

with VisTool extended aggregate spreadsheet output as shown in Tab. 8. These results simply
reflect those from Sec. 6.3.2, as shown in Tab. 6. In this case, we are restricted to an initial subset
and projector, and consider which extension to move to. They have identical κ, so resorting to G and
Q×, we should select a new projector K ′ = {1, 2} based on Q×(�C1,2) = 0.260 < Q×(�C2,3) = 0.269.

25

�x2

X2 c2 �C12 κ(�C12) G(�C12) Q×(�C12) �C23 κ(�C23) G(�C23) Q×(�C23)
y 13 〈8, 5〉 0.270 0.961 0.260 〈7, 6〉 0.270 0.996 0.269

Table 8: Example extended sql output.

Figure 6: Transitions among VisTool spreadsheets.

26

8.3 Front-End Capabilities

We now describe the actual methods of operating with VisTool spreadsheets, and the transitions
among them, as shown in Fig. 6. Boxes indicate types of spreadsheets, or home, indicating creation
of a new spreadsheet from the top level.

We now describe the possible transitions in detail:

Creation: From home, KS must be specified in the preset constructor, and Y in the condition
constructor (Y could be empty).

To Extended Aggregated: If KG is specified in the preset constructor, then KA may
optionally be. If the KD

i are also specified, then an extended aggregated spreadsheet is
produced.

To Aggregated: If KG is specified, but the KD
i are not.

To Detailed: If KG is not specified.

Subsetting: In general, selecting a collection of rows from any spreadsheet produces a new Y ′ ⊆ Y .

Subsetting Proper: A new spreadsheet of the same type can be created, reflecting now
just those rows in Y ′.

Double-Clicking: From either of the aggregated spreadsheets, double-clicking produces a
detailed spreadsheet reflecting Y ′.

“Selection”: From given spreadsheet, columns may be selected to indicate KG,KA, or the KD
i .

Detailed to Aggregated: From a detailed spreadsheet, if columns are selected from KS to
indicate KG, and optionally KA.

Detailed to Extended Aggregated: From a detailed spreadsheet, if columns are selected
from KS to indicate KG, optionally KA, and the KD

i .

Aggregated to Extended Aggregated: From an aggregated spreadsheet, if columns are
selected to indicate KG the KD

i .

References

[1] Agarwal, Sameet; Agrawal, Rakesh; and Deshpande, PM et al.: (1996) “On the Computation of Mul-
tidimensonal Aggregates”, in: Proc. 22nd VLDB Conference, Bombay

[2] Birkhoff, Garrett: (1940) Lattice Theory, v. 25, Am. Math. Soc., Providence RI, 3rd edition

[3] Gouw, Deky and Jones, Bush: (1996) “The Interaction Concept of K-Systems Theory”, Int. J. General
Systems, v. 24:1-2, pp. 163-169

[4] Goodman, IR; Mahler, Ronald PS; and Nguyen, HT: (1997) Mathematics of Data Fusion, Kluwer

[5] Goutsias, J; Mahler, Ronald PS; and Nguyen, HT, eds.: (1998) Random Sets: Theory and Applications,
Springer-Verlag

[6] Gray, Jim; Chaudhuri, Surajit; and Bosworth, A et al.: (1997) “Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals”, Data Mining and Knowledge Discovery,
v. 1, pp. 29-53

[7] Gyssens, Marc and Lakshmanan, Laks VS: (1997) “A Foundation for Multi-Dimensional Databases”,
in: Proc. 23rd VLDB Conf., pp. 106-115

27

[8] Jones, Bush: (1986) “K-Systems versus Classical Multivariate Systems”, Int. J. General Systems, v. 12,
pp. 1-6

[9] Joslyn, Cliff: (1993) “Possibilistic Semantics and Measurement Methods in Complex Systems”, in:
Proc. 2nd Int. Symposium on Uncertainty Modeling and Analysis, ed. Bilal Ayyub, pp. 208-215, IEEE
Computer Soc.

[10] Joslyn, Cliff: (1995) “In Support of an Independent Possibility Theory”, in: Foundations and Applica-
tions of Possibility Theory, ed. G de Cooman et al., pp. 152-164, World Scientific, Singapore

[11] Joslyn, Cliff: (1996) “Aggregation and Completion of Random Sets with Distributional Fuzzy Mea-
sures”, Int. J. of Uncertainty, Fuzziness, and Knowledge-Based Systems, v. 4:4, pp. 307-329

[12] Joslyn, Cliff: (1997) “Distributional Representations of Random Interval Measurements”, in: Uncer-
tainty Analysis in Engineering and the Sciences, ed. Bilal Ayyub and Madan Gupta, pp. 37-52, Kluwer

[13] Joslyn, Cliff: (1997) “Towards General Information Theoretical Representations of Databases Prob-
lems”, in: Proc. 1997 Conf. of the IEEE Society for Systems, Man and Cybernetics, v. 2, pp. 1662-1667

[14] Joslyn, Cliff: (1997) “Measurement of Possibilistic Histograms from Interval Data”, Int. J. General
Systems, v. 26:1-2, pp. 9-33

[15] Klir, George: (1985) Architecture of Systems Problem Solving, Plenum, New York

[16] Klir, George: (1991) “Measures and Principles of Uncertainty and Information: Recent Developments”,
in: Information Dynamics, ed. H. Atmanspacher, pp. 1-14, Plenum Press, New York

[17] Klir, George and Folger, Tina: (1987) Fuzzy Sets, Uncertainty, and Information, Prentice Hall

[18] Klir, George and Harmanec, David: (1996) “Generalized Information Theory: Recent Developments”,
Kybernetes, v. 25:7-8, pp. 50-67

[19] Madden, RF and Ashby, Ross: (1972) “On Identification of Many-Dimensional Relations”, Int. J.
Systems Science, v. 3, pp. 343-356

[20] Pittarelli, Michael: (1994) “An Algebra for Probabilistic Databases”, IEEE Trans. on Knowledge and
Data Engineering, v. 6:2, pp. 293-303

[21] Sudkamp, Thomas: (1992) “On Probability-Possibility Transformations”, Fuzzy Sets and Systems,
v. 51, pp. 73-81

[22] Wang, Zhenyuan and Klir, George J: (1992) Fuzzy Measure Theory, Plenum Press, New York

[23] Yager, Ronald R: (1986) “On the Theory of Bags”, Int. J. of General Systems, v. 13:1, pp. 23-38

[24] Zwick, Martin and Shu, Hui: (1995) “Set-Theoretic Reconstructibility of Elementary Cellular Au-
tomata”, Advances in Systems Science and Applications, v. spcl

28

