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‘We show how the concept of an annotated ordered set can be used to model large tax-
onomically structured ontologies such as the Gene Ontology. By constructing a formal
context consistent with a given annotated ordered set, their concept lattice representa-
tions are derived. We develop the fundamental mathematical relations present in this
formulation, in particular deriving a conceptual pre-ordering of the taxonomy, and con-
structing a correspondence between the annotations of an ordered set and the closure
systems of its filter lattice. We study an example from the Gene Ontology to demonstrate
how the introduced technique can be utilized for taxonomy review.
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1. Introduction

This work is an extension of [9].

Ontologies, taxonomies, and other semantic hierarchies are increasingly necessary
for organizing large quantities of data, and recent years have seen the emergence
of new large taxonomically structured ontologies such as the Gene Ontology (GO)
[1]%, the UMLS Meta-Thesaurus [2], object-oriented typing hierarchies [10], and
verb typing hierarchies in computational linguistics [4]. Cast as Directed Acyclic

2http://www.geneontology.org
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Graphs (DAGs), these all entail canonical mathematical representations as anno-
tated ordered sets (previously called “poset ontologies” [6]).

The size and complexity of these modern taxonomic hierarchies requires algorith-
mic treatement of tasks which could previously be done by hand or by inspection.
These include reviewing the consistency and completeness of the underlying hier-
archical structure, and the coherence of the labeling (the assignment of objects to
ontological categories). The close similarity of the annotated ordered set represen-
tations of these taxonomies to concept lattices in Formal Concept Analysis (FCA)
[5] suggests pursuing their representation within FCA, in order to gain a deeper
understanding of their mathematical structure and optimize their management and
analytical tractibility (see also [7]).

We begin this paper by defining annotated ordered sets, and demonstrate their
appropriateness for representing the GO. Then, we define a formal context appro-
priate for annotated ordered sets, and thereby construct their concept lattices. We
analyze the relationship between an annotated ordered set and its concept lattice
representation, which includes the formulation of a correspondence between the an-
notations of an ordered set and the closure systems of its filter lattice. Also, we
introduce the fundamental concept of an adjustment of an annotated ordered set
and provide quantitative measures of the impact of adjustments. Additionally, we
study an example from the GO. The paper is concluded with a discussion of future
applications and extensions of the outlined approach. Throughout, we assume that
the reader is knowledgable of the theory of FCA [5].

2. Taxonomic Ontologies as Annotated Ordered Sets

We use the GO as our touchstone for the general concept of an annotated ordered
set. Fig. 1 (from [1]) shows a sample portion of the GO. Nodes in black represent
functional categories of biological processes, basically things that proteins “do”.
Nodes are connected by links indicating subsumptive, “is-a” relations between cat-
egories, so that, for example, “DNA ligation” is a kind of “DNA repair”. Elgsewhere
in the GO, nodes can also be connected by compositional, “has-part” relations, but
for our purposes, we will consider the GO as singly-typed. It should be emphasized
that Fig. 1 shows only a small fragment of the GO, which currently has on the order
of 20,000 nodes in three disjoint taxonomies, annotated by hundreds of thousands
of proteins from dozens of species.

Colored terms attached to each node indicate particular proteins in particu-
lar species which perform those functions. This assignment is called “annotation”.
Note that proteins can be annotated to multiple functions, for example yeast MCM?2
does both “DNA initiation” and “DNA unwinding”. Furthermore, an annotation
to a node should be considered a simultaneous annotation to all ancestor nodes, so
that yeast CDC9 does both “DNA ligation” and “DNA repair”. So explicit such
annotations, for example CDC9 annotation to both “DNA ligation” and “DNA
recombination” in Fig. 1, are actually redundant. Finally, note the presence of mul-
tiple inheritance: “DNA ligation” is both “DNA repair” and “DNA recombination”.

It is therefore appropriate to model structures such as the GO as structures
called annotated ordered sets (previously referred to as poset ontologies [6]).
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Fig. 1. A portion of the BP branch of the GO (used with permission from [1]). GO nodes in the
hierarchy have genes from three species annotated below them.

Definition 1 (Annotated Ordered Set) Let P := (P, <p) be a finite ordered
set (poset), let X be a finite set of labels, and let F : X — 28 be an annotation
function. Then we call O := (P, X, F') an annotated ordered set and refer to (X, F')
as an annotation of P. In case P is a (complete) lattice we call O an annotated
(complete) lattice denoted L. If |F(z)| = 1 for all z € X, for convenience, we regard
F as a map from X to P and say that Q is elementary.

The annotated ordered sets form a category under the following concept of mor-

phism. This will enable us to compare annotated ordered sets (and their adjustments
as will be seen later) adequately.
Definition 2 (Morphism) Let @ and O3 be annotated ordered sets where Q; :=
(Pi, X, Fi) and P; := (P;,<;). Then a pair of maps, (1, A), will be called a mor-
phism from Q7 to @y if u is an order-preserving map from P; to P2 and A is a map
from X; to X2 such that

p(F1(z)) C Fa(Mz))
holds for all z € X;. The morphism (u, A) is called strong if
p(F1(z)) = Fa(A(z))

holds for all z € X;.


file:///sewf

348 T. B. Kaiser, S. E. Schmidt & C. A. Joslyn

As usual, the powerset of a set X will be denoted by 2%, and for a map f from
a set X to a set Y, by abuse of notation, the powerset lifting f will be given by the
map 2/ from 2% to 2¥ with 2/(T) := {f(t)|t € T} for all T € 2¥. Now, a mor-
phism as defined above can be captured by the following semi-commutative diagram:

X1#>X2

.
Pt 2 oP

3. Concept Lattice Representations

We are now prepared to construct concept lattice representations of annotated
ordered sets by deriving the appropriate formal contexts. For an ordered set
P := (P,<p) and node ¢ € P we denote by T ¢ := {p € P|q <p p} the prin-
cipal filter of ¢ and dually by | ¢ the principal ideal. In general, for ¢ C P we
define 1 @ := {p € P|3qg € Q : ¢ <p p} and dually | Q. Given an annotated
ordered set @ := (P, X,F) we can construct a formal context Ko := (X, P, I)
where
zlp:<=|pNF(x)#0

for x € X, p € P. Note also that

zlp <= Jg<pp:qcF(z) <= pc U Tq.
qEF(x)

The concept lattice of Ko will be denoted by By := (Bo,<gp. ), where Bg :=
B(Ko) is the set of formal concepts of the formal context Kg [5]. By, is called the
concept lattice representation of the annotated ordered set Q.

In case © forms an annotated complete lattice and (A, B) € Bp is a formal
concept in Bg, we observe that A = B’ is the set of all z € X such that A B is an
upper bound of F(x). Also, for convenience, for a node p € P denote p! := {p}! C
X.

We can define a new relation on P induced by the concept lattice Bg. Let pg be
the map which assigns to every element p in P its attribute concept (p!,p’!). The
range of ug is denoted by Fg. We say p is conceptually less or equal than ¢ if and
only if uo(p) <m. po(q), denoted by p Eg g. We call Co the conceptual pre-order
of @. In general, the relation Cg is not an order since for different p,q € P the
corresponding attribute concepts up(p) and ug(p) can match. Two annotations
(X, 1), (X, Fy) of P are called annotationally equivalent if their conceptual pre-
orders coincide.

Definition 3 (Adjustment) For an annotated ordered set O := (P, X, F), the
adjustment of O is given by the annotated ordered set Ad(O) := (Pgp, X, Fp) where

Fo(z) == {uo(p) |z € p'} forall z € X

and Pg := (Po, <g) with <g:=<p, NPy x Fy.
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Fig. 2. Example of an annotated lattice.

0O|A/B|/C|/DIE|F|G|H|I|J|K]|1
a X | X | X X | x| x X
b X X X X | X
d X X X
e X | X X | x X
f X X X
g X | x| x
i X | X | X X | X | X | X

Fig. 3. Context for the annotated lattice in Fig. 2.

Proposition 1 Let O := (P, X, F') be an annotated ordered set. Then (ug,idx)
is a morphism from O to its adjustment Ad(0). O

Let us agree to call an annotated ordered set adjusted if it is isomorphic to its
adjustment. Though an annotated ordered set is not necessarily adjusted, every
adjustment is.

In Sections 4, 5, and 7 we will explore the relationship between the original or-
dered set P and the constructed conceptual pre-order (P, Cg) and hint at potential
applications arising from this comparison.

An example for an elementary annotated lattice L. := (P, X, F') is given in Fig. 2
where P := ({A,B,...,K,0,1},<p), X = {a,b,d,e, f,9,7}, and F and <p are
defined as illustrated. Fig. 3 shows the formal context Ky, and Fig. 4 the resulting
concept lattice B, which in this case also is the adjustment of L.

4. Mathematical Properties of Concept Lattice Representations

In the first part of this section we will analyze how the order of the annotated
ordered set and the order of its concept lattice are related. In the second part
we will investigate how the concept lattice representations, derived from a given
ordered set using different annotations, can be classified.
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Fig. 4. Concept lattice representation of the annotated lattice in Fig 2.

4.1. Annotated ordered sets and their conceptual pre-order

The following proposition connects an annotated ordered set with its concept lattice
representation. In the following, let O := (P, X, F') be an annotated ordered set.
We define i : P — Bg via u(p) = (pf,p'!) for all p € P, that is, it maps each poset
node to its attribute concept in Bg. Note, that u is the composition of ugp with the
canonical embedding of Py into the concept lattice representation of Q.
Proposition 2 Let O be an annotated ordered set. Then p constitutes an order-
homomorphism between P and the concept lattice representation of Q.
Proof. Let p,q € P. Then we have p <p q¢ <] p C| ¢ which implies

pl={reX||lpnF)#0}C{reX]| qnF(z)£0} =4

Since the last statement is equivalent to u(p) <s, #(q) this asserts the proposition.
O
By definition of <g, it follows that p <p ¢ = p Cg q. Clearly, the converse is
wrong, since in general Cg is only a pre-order. Even for the factor order associated
with the pre-order, the converse implication does not hold as is verified by the
example shown in Figure 5, where ¢ Cg a, but ¢ and a are non-comparable in P.
But for adjusted annotated ordered sets we have a nice situation.
Proposition 3 Let O be an adjusted annotated ordered set. Then p constitutes
an order-reflecting embedding of P into the concept lattice representation of Q.
For elementary annotated complete lattices we find the following connection
which goes further than the results for annotated ordered sets.
Proposition 4 Let I. = (P, X, F) be an elementary annotated complete lattice.

The concept lattice of L. is order-embedded into P via the map ¢ : By, — P where
(A,B) — AB.
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Fig. 5. Counter-example to p inducing an order isomorphism.

Proof. For all ¢1,co € B, we have to show that ¢; <s C2 holds if and only if
w(c1) <p @(c2). Let ¢ = (A4, B) and ¢ = (C, D) be concepts in Br.
“=7: Assume (A,B) <g (C,D). This is equivalent to D C B which implies
ANB <p AD.
“<”: Assume A B <p A D. Since L is elementary, B! is the set of all labels z € X
such that A B is an upper bound of F(x) it follows that B! C D! and therefore we
have (B!, B) <g (D', D) as required. O
For elementafy annotated lattices the previously introduced mappings ¢ and ¢
combine in a surprising way.
Theorem 1 Let L := (P, X,F') be an elementary annotated complete lattice.
Then (p,u) forms a residuated pair between the concept lattice representation
of L and P. In particular, ¢ is an injective \/-morphism and g is a surjective
/\-morphism.
Proof. Firstly, we deduce from Proposition 4 that ¢ is injective. For residuated
pairs this implies the surjectivity of the second map. It remains to show that (¢, )
forms a residuated pair.
Since L is elementary, F' can be regarded as a map from X to P and then the
incidence relation I of K, is defined via zIp if and only if F(z) <p p; therefore
z! =7 F(z) for all z € X. In the following let (A4, B) be an arbitrary concept in
Br. We derive B = AT = (N, c4 2! = Nyea T Fz) =1 V F(A); hence, we receive
w(A,B) = A B =V F(A). We conclude the proof as follows:

P(A,B)<pp < \VFA) <pp < pclVFA) =A
—  ACy < (A, B)<s ulp)

O]

As a consequence of our theorem we know that ¢ embeds the concept lattice rep-
resentation of an elementary annotated complete lattice into its underlying lattice
as a kernel system. This fact applies to the example from Figure 2 and is visualized
in Fig. 6.

Though, in general, the concept lattice representations of elementary annotated
ordered sets cannot be embedded into their underlying ordered set, it is feasible
to embed them into a well-known extension of the former. For a subset @ of an
ordered set P, we will use the notation Q! for the set of all lower bounds of @ in P.
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Theorem 2 Let O := (P, X, F) be an elementary annotated ordered set and let
K := (P, P,<p). Then the map Bg — B(K) with (4, B) — (B!, B) forms a \/-
embedding of the concept lattice representation of O into the Dedekind- MacNeille
completion of P.

Proof.  Firstly, we refer to Theorem 4 in [5], p.48, for details regarding the
Dedekind-MacNeille completion.

Since Q is elementary, ' =7 F(z) is an intent not only of Kg but also of K for
every r € X; trivially, p! is an extent of Kg for every p € P. By Definition 69 in [5],
p. 185, this means that I is a bond from Kg to K. Now Corollary 112 in [5], p. 2586,
implies that the map ¢; from By to B(K) with (4, B) = (AL, AT) = (B!, B) is
a \/-morphism, which clearly is injective. U

e

S

Fig. 6. The concept lattice representation from Fig. 4 embedded as kernel system in its annotated
lattice from Fig. 2

4.2. Classifying the annotations of an ordered set

We start with giving two rather extreme examples for different concept lattices
derived from the same ordered set via different annotations. In the following, it is
more convenient to regard an annotated ordered set O := (P, X, F') as a formal con-
text with an ordered set of attributes. Since the annotation function F : X — 2F
set-theoretically is a relation F € X x P, the formal context (X, P, F') together
with the ordered set P = (P, <p) yields another way of looking at an annotated
ordered set. It is obvious, that the formal context Ko is equal to (X, P, F o <p),
where o denotes the relational product. We recall Theorem 4 from [5] which states
that for an ordered set P its Dedekind-MacNeille completion is isomorphic to the
concept lattice of the formal context (P, P,<p). Now it is easy to see, that the
identical labelling function Fyq : P — 2F with p — {p} yields an annotated ordered
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set Qg := (P, P, F;4) which is isomorphic to the Dedekind-MacNeille completion of
P, because Figo <p=<p which yields Kg = (P, P,<p). On the other hand — as
complicated as P might be — if the labelling function is constant with Fp(z) = P
for any label z € X we get a formal context with I = X x P. That means, the
concept lattice representation shrinks the ordered set into a single element.

To get a more comprehensive description of the interplay of the annotations of
an ordered set P and its concept lattice representations we will use the filter lattice
of an ordered set P — which is defined as F(P):= {F CP| T F=F},C)-asa
framing structure.

Theorem 3 The annotations of an ordered set P = (P, <p) are, up to annotational
equivalence, in one-to-one correspondence to the closure systems in the filter lattice
of P.

Proof. Let x € X be a label. The object intent z"°<? of z in (X, P, Fo <p)
is of the form {p € P|3¢ € z¥ : ¢ <p p} which is equal to the filter T zf" in P.
Since the intents of all concepts of a concept lattice are exactly the meets of the
object intents, the intents of the concepts of B(X, P, Fo <p) are exactly the meets
of filters of the form zf°<% with € X, and therefore, form a closure system in
the filter lattice of P.

Let us assume that X C 27 is a closure system in the filter lattice of P. We consider
the formal context (X, P,3). For X € X, we get X° = {p € Plpe X} = X.
Therefore the intents of the associated concept lattice constitute exactly the closure
system X. And since in our situation > o <p is equal to 3, an annotation (X, )
corresponding to X is found. 0

The above theorems say that the cosmos of possible structures which can be
produced via annotating an ordered set and forming its concept lattice are restricted
to closure systems in the filter lattice of the original ordered set — and also exhaust
them.

5. Application to the Gene Ontology

In this section we apply our proposed technique to the GO cutout depicted in Figure
1. The given diagram can be seen as an annotated ordered set where the underlying
ordered set consists of the functional categories of biological processes (as e.g. DNA
replication) and the order is given by the arrows. The set of labels consists of the
proteins and the annotation function maps a protein to a function category if it
is listed at the respective function category node. Clearly, this annotated ordered
set can not be interpreted as an annotated lattice, since infima and suprema do
not exist for any subset of nodes, e.g. the infimum over all function categories is
not present. Also the annotation function attaches some proteins to several nodes
as it is the case for Lig! and Lig8 who are attached to the functional categories
of DNA ligation, DNA recombination, and DNA repair. Figure 7 shows a diagram
of the concept lattice representation of this annotated ordered set where we have
omitted function categories where there is no protein attached to the nodes or to
some subnode. Figure 8 shows the conceptual pre-ordering of the functions derived
from the concept lattice representation (in this case it is an order).
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Fig. 8. Function categories ordered conceptually.

We want to point out some interesting differences between the annotated ordered

set and its concept lattice. Conceptually, the function category DNA Recombination
is less than DNA Repair while in the GO the two nodes are not comparable. This
change occurs because DNA Repair “inherits” the proteins from DNA Ligation
which yields a superset of proteins annotated to DNA Repair compared to DNA
Recombination. Since the design of the function category ordering of the GO differs
from the conceptual pre-ordering the question arises if some proteins exist but are
not present in the GO which justify the non-comparability or if the ordering should
be redesigned.
If we focus our attention on the protein CDC9 we see that it is annotated to two
quite horizontally distinct nodes in the GO, Lagging strand elongation and DNA
ligation. In the concept lattice representation, the new object concept node for
CDC9 thus ties together these two GO nodes through the intermediate concept
shown there, the CDC9 object concept atom on the left. Now, we could ask the
question if there is a meaningful label for this node and if it should eventually be
introduced in the GO.

6. Soundness and Completeness of Annotated Ordered Sets

As described in the last section, there can be interesting differences between anno-
tated ordered sets and their adjustments. In this section we distinguish two aspects



356 T. B. Kaiser, S. E. Schmidt & C. A. Joslyn

e soundness
e completeness

for measuring those differences.

6.1. Soundness

To measure conceptual soundness, firstly, one can investigate the degree of collapse,
that is, to calculate how many elements of the initial taxonomy are identified. The
more elements get identified the larger is the deviation from the initial taxonomy to
its adjustment. We propose to use the following supermodular isotone normalized
function on the lattice of equivalence relations on a set P, given by,

6] — 1P|

In our setting of an annotated ordered set O := (P, X, F') we define the degree of
collapse as

30(Q) := og(ker(uo)), whereker(ug) := {(p,q) € P x P|uolp) = polq)}.

Applying this to our example of the GO we receive 0 as a degree of collapse, that
is, nothing is collapsed.

Secondly, one can investigate the degree of missing links, that is, all pairs of
nodes which are not comparable in the annotated ordered set but become related in
the conceptual pre-order. In our setting of an annotated ordered set O := (P, X, F)
we define the normalized degree of missing links as

|[Co|—|<p|
o) =—7-—
SO = P =T <

Applying this to our example of the GO we receive

_45-41 4 ~ 0.039
T T4 1030 Y
that is, since four links are added in the adjustment, the degree of missing links
turns out to be approximately 0.039.

6.2. Completeness

To measure the completeness of an annotated ordered set we propose to take into
account the concepts of the concept lattice representation which are not attribute
concepts and different from the smallest concept. Those concepts might be consid-
ered as proposals for new nodes in the taxonomy, formally for new elements of P.
We define the degree of potentially missing taxonomy nodes as

 [Bo| - u(P)| 1
1P

Co(@) :


file:///PxP/-/P/
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Applying this to our example of the GO we receive

19 -12 -1
COZT:O.5

as a degree of potentially missing taxonomy nodes, that is, for every two nodes
present in the annotated taxonomy a new node is present in the concept lattice
representation.

7. Discussion

As a main application area of our technique we see the task of review or refinement
of taxonomic ontologies as insinuated in the last sections.

It should be noted that the formal properties of the GO are just now beginning
to be explored. Joslyn et al. [6] have done preliminary measurements of its poset
properties, including height, width, and ranks. And while we've noted that the
GO is not specifically lower-bounded, if a lower bound is asserted, then it can be
questioned how many pairs of nodes do not have unique meets and joins, and thus
how close it comes to our idealized annotated lattice. This is something we have
addressed specifically elsewhere [7], including proposing a method to measure this
degree of lattice-ness based on the FCA reconstruction of the (un-annotated) GO.

We see future work in this line of research in evolving measures and tools to make
the technique operable for large taxonomies (see also [7, 8]). This would involve the
design of expert systems, which support a semi-automated review or reengineering
process of taxonomic ontologies.
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