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Abstract. 
As we enter this amazing new world of artificial and virtual systems
and environments in the context of human communities, we are
interested in the development of systems and environments which
have the capacity to grow and evolve their own meanings in the
context of this community of interaction. In this paper we analyze the
necessary conditions to achieve systems and environments with these
properties: 1) a coupled interaction between a system and its
environment; 2) an environment with sufficient initial richness and
structure to allow for; 3) embodied emergent classification of that
environment-system coupling; 4) which is subject to pragmatic
selection.

1 ARTIFICIAL AND REAL ENVIRONMENTS AND

SYSTEMS

1.1 Systems, Environments and Constraints
A systems analysis divides the universe between a "system"
and an "environment"where the first is embedded. A system
interacts with its environment by input-output relations:
making distinctions in that environment as some kind of
generalized "perception relation", making decisions about
appropriate actions to take back into that environment, and
then taking those actions. Of course, these distinctions can be
drawn relatively arbitrarily, with system/environment
boundaries drawn by investigators, or by the systems
themselves, for pragmatic purposes.  Generally, the system is
regarded as somewhat autonomous, dynamic, and fast-scaled,
connected to the static, slower-scaled environment through
input/output channels of sensors for measurement into the
system from the environment, and effectors for action into the
environment by the system. Also, both the system and the
environment can be further decomposed into subsidiary
environment/system couplings, for example the sensory inputs
being the environment to an agent within the system, or the

environment containing, or in the co-evolutionary limit just
consisting of, many other "systems" which are all mutually
interacting. 

Both the system and the environment contain structures, or
constraints on the range of possible values, configurations, or
other variable properties [Joslyn, 1997]. These serve as
sources of information between the environment and the
system. As the system-environment coupling develops or
evolves, these structures also change. Typically, constraints
grow in the system as it learns, adapts, or evolves in response
to the environment, the effects of its actions in the
environment, and the effects of the actions of other systems on
their collective environment.

1.2 Artificial and Real Systems and Environments
More specifically, we are interested in considering systems
and/or environments which are "natural" or "real" in some
sense, and those which are "artificial", "synthetic", or
"virtual". The particular cases will help determine the range of
kinds of informational constraints possible in the
system-environment coupling.  In all, we can consider four
categories:

System Environment

Real Real Reality: organisms in the world

Artificial Real Robotics: artificial mechanism
interact in the world which
includes other such devices and
organisms

Real Artificial Virtual reality, MUDs

Artificial Artificial Agents in artificial environments,
e.g. artificial life experiments
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Given these possibilities of real and artificial
system-environment couplings, it is important to evaluate what
kind of interactions they can evolve. More specifically, we
need to ask what kinds of emergent behaviors and semantics
can be evolved in them, or how the coupled constraints in the
system and environment can coevolve semiotically. To
effectively discuss this, we need to ground the debate in what
we know about semantic emergence in natural and artificial
systems, that is, in the discourse of complex systems research.

2. SEMANTIC EMERGENCE AND SELECTED SELF-
ORGANIZATION

2.1 Emergent Classification
The attractor behavior of any dynamical system is dependent
on the structural operations of the latter, e.g. the set of boolean
functions and connections in a boolean network. In addition,
attractor values can be used to refer to observables accessible
to the self-organizing system in its environment, and thus
perform environmental classifications (e.g. classifying neural
networks).  Not all possible distinctions in some environment
can be “grasped” by the self-organizing system: it can only
classify those aspects of its situated interaction with and
environment which result in the maintenance of some
internally stable state or attractor. Furthermore, the behavior
of a situated agent in an environment is, in this sense, the
result of how the agent classifies the environment. Thus,
behavior is itself an emergent property of the lower level
dynamics that implements the agent. The process of obtaining
novel classifications of an environment, by an autonomous
self-organizing system, can be referred to as emergent
classification. Emergent because it is the result of the local
interaction of the basic components of the self-organizing
system and not from a global controller.

2.2 Selected Self-Organization
A computational neural network by itself can classify an
environment, but the processes (e.g. a back-propagation
algorithm) that make it improve its classifying ability are
external to the network. Similarly,  Evolutionary strategies rely
on internal random variation which must ultimately be
externally selected. It is precisely the ability of such  systems
to adapt  their structure in order to better classify a changing
environment that leads to emergent classification of a
particular environment. For a classifying self-organizing
system to change its classification ability, structural changes
must be performed to alter its attractor landscape. When the
structure responsible for a given dynamics is changed, we
obtain a new environmental classification (e.g. weight changes
in a neural network). In other words, the self-organizing

system must be structurally coupled [Maturana and Varela,
1987] to some external system which acts on structural
changes of the first and induces some form of explicit or
implicit selection of its dynamic representations: selected self-
organization.

Explicit control of a classifying system’s structure would
amount to the choice of a particular dynamics for a certain
task and can be referred to as learning. Under implicit control,
the self-organizing system is subjected to some variation of its
structure which may or may not be good enough to perform
our task. Those self-organizing systems which are able to
perform the task are thus externally selected by the
environment to which they are structurally coupled. For
selection to occur we must have some internal vehicle for
classification — there must be different alternatives. The
attractor landscape offers these alternatives. Selected self-
organization relies on some system-environment coupling of
structure. It also explicitly emphasizes a second dimension of
an embodied semiosis of autonomous systems with their
environments. If classification implies semantic emergence,
selection implies pragmatic environmental influence.

2.3 Von Neumann, the Symbolic Advantage and the
Parts Problem
Von Neumann’s [1966] model of self-replication is a systems-
theoretic criteria of open-ended evolution [for a detailed
discussion of this model see Rocha, 1996, 1998]. Based on the
notion of universal construction and description it provides a
threshold of complexity after which systems that observe it
can for ever more increase in complexity. This model clearly
does not rely on a distributed but on a local kind of memory.
Descriptions entail a symbol system on which construction
commands are cast. These commands are not distributed over
patterns of activation of the components of a dynamic system,
but instead localized on “inert” structures which can be used
at any time — a sort of random access memory. For instance,
in the genetic system (which Von Neumann’s model
conceptually describes), most any sequence of nucleotides is
possible, and its informational value is almost completely
independent of the particular dynamic behavior of DNA or
RNA. The symbol system, with its utilization of inert
structures, opens up a whole new universe of functionality
which is not available for purely dynamical self-replication. In
this sense, it can evolve functions in an open-ended fashion
[Pattee, 1995a]. We can refer to this mechanism as description
based evolution [Rocha, 1996, 1997, 1998] It introduces the
third level of an evolving, embodied semiosis of autonomous
systems with their environments:  syntax.

Notice that according to Von Neumann’s own formulation, a
symbol system utilized for the construction of self-
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reproducing systems is not an isolated artifact. Rather, in the
context of construction, a symbol system entails a set of
available parts. That is, construction blueprints are cast on a
symbol system whose primitives are a finite set of parts. In the
case of self-reproducing automata, these parts are “and”, “or”
and other logical operators, and in the case of the genetic code
the parts are the set of aminoacids (the symbols are codons or
sets of 3 nucleotides). It is in this sense that open-ended
evolution must be understood. A given material symbol
system cannot represent everything, only what its primitive
parts can construct. Natural selection is open-ended for any
form that can be constructed through folding aminoacid
chains.

The syntactic dimension of Von Neumann’s scheme enlarges
the domain of classification in an open-ended fashion due to
the description-construction dichotomy [Rocha, 1996, 1998],
but it establishes another facet of embodiment with its Parts
Problem. A particular materiality is tied to specific
construction building blocks. The richer the parts, the smaller
the required descriptions, but also the smaller the number of
classifiable categories or constructed morphologies. For
instance, Von Neumann used simple building blocks such as
“and” and “or” gates to build his automaton, which in turn
required a 29 state cellular automata lattice and very
complicated descriptions. Arbib[1966] was able to simplify
von Neumann’s model greatly by utilizing more complicated
logical building blocks. Likewise, the genetic system does not
need to describe all the chemical/dynamical characteristics of
a “desired” protein, it merely needs to specify an aminoacid
chain which will itself self-organize (fold) into a functional
configuration with some reactive properties. In other words,
a given materiality, that is, a given set of parts such as amino
acids, provides intrinsic dynamic richness which does not have
to be specified by the symbol system on which construction
commands are cast [Moreno, et al, 1994] making descriptions
much smaller. Embodiment provides this kind of material
information compression.

The other side of Embodiment, is that it also constrains the
universe of possible constructions (universe of open-
endedness). Living organisms are morphologically restricted
to those forms that can be made out of aminoacid chains
through the genetic code, while in principle, a formal symbol
system, stripped as it is from any materiality, can describe
anything whatsoever. Of course, this ‘in principle’ is
seriously, and easily, constrained by computational limits, as
formal descriptions are much larger than material ones. A
complete formal description of a protein would have to
include all of its physical characteristics from the atomic to the
chemical level, while a gene needs only a description of an
aminoacid sequence. A discussion of  how to incorporate the

notion of embodiment in computational models of
evolutionary systems, in order to obtain some form of
descriptional information compression is presented in Rocha
[1995, 1997].

2.4 Situated Action
Traditionally, AI relied strongly on models of representation
and direct perception of the world. It was mostly preoccupied
with functional semantics. The control of its robotic artifacts,
for instance, was solely based on the high-level symbol-
manipulation of semantic categories. Artificial Life, mostly
through the work of  Brooks [1991], whose behavior language
replaced the traditional high-level control of robots by a
scheme of functional modularization by behavior generating
modules, changed all this. Instead of a high-level computation
of behavior, the bottom-up (emergentist) self-organization of
simpler components produces a variety of behaviors
depending on the interaction of a robot with its environment.
“Situated” does not mean merely material, but interactive. The
material (structural) coupling of the robot with its environment
is the source of behavior, and not just the robot control system
alone. In other words, the modeling of living and cognitive
systems is moved to the dynamics of self-organization of a
network of components and its interaction with an
environment (selected self-organization).

It can be argued that the behavior modules utilized are still too
high level and do not allow the sort of plasticity that living
systems observe. Indeed, it is not always obvious how to
physically compartmentalize behavior modules: a bird’s wing
is both an airfoil and engine at the same time [Rosen, 1993].
The sort of behavioral decomposition pursued by Brooks may
not offer yet the kind of entailment or network causality found
in living organisms [Rosen, 1991; Prem, 1995] which allows
for genuine evolution of new behaviors [Cariani, 1992],
however, it does mark a very important shift in the practice of
AI: the transition from a central control to an emergentist, self-
organizing,  practice of autonomous agents. Cognition is no
longer modeled as the creation of universal classifications of
the world, but as the embodied, evolving, interaction of a self-
organizing system with its environment. Whichever way
situated robots solve a problem, it is done by the construction
of their own classifications, given the set of low level
components they have available, as they interact with their
environment, and not by externally imposed rules. 

3. LAWS AND RULES IN ARTIFICIAL MEDIA
As discussed above, what defines evolving systems is that
they implement an embodied, evolving, semiosis (EES)
[Rocha, 1997] with their environments. What is important



4

here is to discuss whether artificial systems can observe an
equivalent kind of organization. In summary, EES requires:

1. Material self-organization in situated interaction
with an environment

2. Semantic emergence: classification based on
structural perturbation of self-organizing dynamics
by descriptions that define a material symbol
system

3. Selection in an environment leading to open-ended
evolution

Self-organization in natural systems is a result of inexorable
laws of physics. Living organisms can generate an open-ended
array of morphologies and modalities, but they can never
change these laws. “Physical laws describe those events over
which organisms have no control” [Pattee, 1995a, page24]. It
is from these constant laws (and their initial conditions) that
all levels of organization from life to cognition and social
structure emerge. These levels of emergence typically produce
their own principles of organization, which we can refer to as
rules, but all of these cannot control or escape physical law
and are “neither invariant nor universal like laws” [Pattee,
1995b, page 27]. The question of what kinds of rules can
emerge from deterministic or statistical laws is at the core of
the field of Artificial Life [Langton, 1989]. It is also pretty
much the question of generating emergent semantics in
artificial environments, given the discussion of selected self-
organization in terms of emergent classification above.
“Without principled restrictions this question will not inform
philosophy or physics, and will only lead to disputes over
nothing more than matters of taste in computational
architectures and science fiction.” [Pattee, 1995b, page 29]
For artificial environments to be relevant for science in
general, the same categories of laws/initial conditions and
rules that we recognize in the natural world, need to be
explicitly included in an artificial form.

3.1 Evaluating possible system-environment couplings
An important question, is how open-ended can semantic
emergence be? To observe rich emergence in artificial
environments we need to:

a. SPECIFY THE DYNAMICS OF SELF-ORGANIZATION:
specify laws and their initial conditions, which are
responsible for the variety of the artificial
environment (including agents) and the emergence
of context-specific rules.

b. OBSERVE EMERGENT OR SPECIFY CONSTRUCTED

SEMANTICS: identify emergent or pre-programmed,

but changeable, rules that generate agent behavior
in tandem with environmental laws.

c. PROVIDE A PRAGMATIC SELECTION CRITERIA: create
or identify a mechanism of selection (pragmatics)
so that the semantics identified in b is grounded in
a given environment.

In particular systems and environments the laws and rules take
different forms:

� REAL SYSTEMS IN REAL ENVIRONMENTS: systems
with morphogenetically developed and biologically
evolved neurological sensory and action modalities
and structures (rules) in an environment defined by
physical law which lead to geologically evolved
structures, biologically co-evolved ecologies, etc.

� ARTIFICIAL SYSTEMS IN REAL ENVIRONMENTS:
systems with internal lower-level physical rules
leading to emergent, bottom-up behavior (situated
robotics) or programed rule-based (physical)
behavior (traditional robotics) defining
world-models and decision-making mechanisms, in
an environment defined by physical law.

� REAL SYSTEMS IN ARTIFICIAL ENVIRONMENTS:
systems with morphogenetically developed and
biologically evolved neurological sensory and
action modalities and structures (rules) in an
environment defined by virtual physics, formal
ontologies, external databases, user interfaces, etc.
The key here is to define rich enough virtual laws
which can couple with the  modalities evolved in
the real physical world, in order to observe true
semantic emergence with its own selective
mechanisms.

� ARTIFICIAL SYSTEMS IN ARTIFICIAL

ENVIRONMENTS: systems with internal lower-level
virtual rules leading to emergent, bottom-up
behavior (e.g. artificial life) or programed rule-
based (virtual) behavior (traditional AI) defining
world-models and decision-making mechanisms, in
an environment defined by virtual physics, formal
ontologies, external databases, user interfaces, etc.
Here besides rich artificial laws, we further require
rich artificial rules. 

Artificial Life may be a source of relevant examples for other
completely computational media such as the World Wide
Web. In artificial life, more that life-as-it-could-be [Langton,
1989], we further need physics-as-it-could-be [Pattee, 1995].
Good examples of this are the emergent computation
experiments on Cellular Automata (CA) [Mitchell and
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Crutchfield, 1995] with Genetic Algorithms (GA’s). There is
an environment which requires a non-trivial task to be
performed (laws), The CA provides the lower-level virtual
rules that lead to emergent behavior in such an environment,
provided a selection mechanism implemented by the GA
(selected self-organization). The evolved, emergent, higher
level structures (particle computation) define an emergent
semantics with a primordial syntax to solve the task or
environmental survival requirements. The same structures can
be used to solve different tasks in different environments. This
is an effective example of emergent semantics in artificial
system/environment couplings.

The interplay between laws and rules is in particular system-
environment couplings is, of course, highly particular to their
specific natures. However, certain regularities about laws and
rules in real and artificial systems and environments can be
isolated from this complexity:

1. Real Systems: Organisms operate with rule-based
action and sensory modalities which have been
morphogenetically developed and biologically
evolved in real environments and adhering to
physical law.

2. Real Environments: Physical laws have lead to
particular geological structures, for example; rules
are in the biologically co-evolved ecologies.

3. Artificial Systems: At their core, these are rule-
based, although they have to interact with whatever
the laws are of the environments in which they are
embedded. 

4. Artificial Environments: These are environments
necessarily defined by the “laws” of their virtual
physics, whether formal ontologies (Uschold and
Gruninger, 1996), external databases, user
interfaces, etc. Their rules, therefore, create a form
of “virtual culture”, for example the initial
placement of objects in a MUD room.

3.2 Artificial Environments
Consider the range of artificial environments:

� VIRTUAL REALITY: Intended to provide an accurate
model of the real environment. Representaions are
usually continuous, spatio-temporal dimensions
with Euclidean metrics; interfaces are graphical; a
virtual physics (laws) of the model world is
included.

� MUDS: Intended to provide a logical
representation of a synthetic pseudo-real
environment. Representations are discrete, formal,

linguistic, high dimensionsal with no metrics;
interfaces are textual; both laws (connections
among rooms, properties of objects) and rules
(changeable structures, properties, etc) are initially
set up. The more the rules are pre-defined, the least
room for genuine semantic emergence there will
be. The more these rules are left to be a result of
self-organization, the more semantic emergence
one can expect to see.

� WEBS: Intended to provide a graph-theoretical
representation of an abstract, logical space.
Representations are primarily textual, with minimal
graphical elements; very high dimensional,
graph-theoretical metrics (e.g. path lengths
between pages); environment is almost entirely
lawful (web topologies fixed by authors). Very
little room for semantic emergence.

� EXPERT SYSTEMS: Intended to provide logical
representations of a knowledge system.
Representations are textual; no metrics; initial
environment is based on law-like formal
ontologies, potential for user-developed rules as
extensions which can potentially allow for
semantic emergence if there is selected self-
organization of these rules.

Of course, there is also a vast diversity in the range of possible
artificial environments. The broad classes of artificial
environments each present their systems (whether real or
artificial) with different representational modalities and forms
of reference. The possible system-environment couplings will
necessarily be constrained by these modalities. 

4. CONCLUSIONS
To address emergent semantics in artificial environments, in
particular web environments, we need the following, partially
equivalent, statements to be observed.

� Understand the modalities of web-based virtual
environments as a NEW medium, related to, but
unlike, any of the others considered above (VR,
MUDs, webs, application programs).

� Imbue them with a sufficiently rich  "virtual
physics".

� Allow the definition of system-specific, low or
high level, rules of behavior.

� Set up a mechanism of explicit or implicit
selection.

� Environments and systems should be complex
enough to allow the mechanisms of selected self-
organization to occur in the situated interaction of
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agents in artificial or real environments. This
requires the evolving, embodied, semiosis
previously discussed.

� Environments cannot be entirely lawful, so that
users can interact with both the virtual "physical"
world and each other as actors in that environment.

� There should be sufficient interaction to have these
agents constructing, preferably in a bottom-up
emergent fashion,  a new emergent, shared
semantics by virtue of their situated interactions
with the "world" and each other.
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