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ABSTRACT: This paper summarizes an on-going development of a metric to quantify total uncertainty in
the validation of a computer code that might be used, for example, to assess the reliability of a structural
system.  The total uncertainty is expressed as an aggregation of various forms of uncertainty. Such an
aggregation is based on a group of methods collectively called generalized information theories. Among
these theories are evidence theory, possibility theory, fuzzy set theory and, of course, probability theory. A
simple case study is used to illustrate how the validation of a computational prediction can be assessed by
the representation and quantification of uncertainties that influence the difference between the prediction
and the experimental results.

INTRODUCTION

Inherent in most constructed systems built for the public (e.g., buildings, bridges, dams)
there is some margin of safety defined as the amount by which the system exceeds the
limits of its nominal design requirements. Often, original design knowledge is not
adequately documented, making later uncertainty quantification and safety margin
estimation difficult.  Constructed systems suffer degradation as they age.  Design intent
and its relationship with the structure’s current condition are not easily determined. When
we assess a structural system in terms of its reliability or safety, we are interested in how
the system responds to external disturbances like wind or earthquake loading.  But, what
if the system changes with time, due to aging or other effects? Most structural designs are
based on today’s knowledge of environmental loads and today’s material properties.
However, how robust will that design be with different, potentially greater loads, and
aging materials and undetermined workmanship?  In other words, how robust is today’s
optimum design to the uncertainties in various design or environmental conditions?
More importantly, if we want to ensure that our computational capabilities can assess
these changes, we need a way to quantify the many uncertainties involved in making
these predictions.  Of particular concern in making predictions about structural response
is the systems capacity to remain safe as time evolves and external conditions change.
We are developing metrics to assess the quality of numerical predictions when compared
to experimental evidence, in terms of the total uncertainty in the predictions.

This paper summarizes our on-going development of the total uncertainty, based on a
group of methods collectively called generalized information theories, to represent the
various uncertainties that impact validation assessments.  Among these theories are
evidence theory, possibility theory, fuzzy set theory and, of course, probability theory. A
simple case study is used to illustrate how the validation of a computational prediction
can be assessed by the representation and quantification of uncertainties that influence the
difference between the prediction and the experimental results.
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VALIDATION ASSESSMENTS

Validation is the process of evaluating a model's predictive capability and its ability to
represent reality. It involves the act of quantifying how well and under what conditions a
model or code matches real systems and thus can be trusted in a predictive capacity.
Validation is also a process of determining the degree to which a computer simulation is
an accurate representation of the real world, from the perspective of the intended uses of
the model.  Some have suggested that validation is easier to understand; e.g., that it is
simply solving the appropriate governing equations. Within the context of model
validation the ultimate goal of uncertainty quantification is to construct an uncertainty
model for every component of the simulation, which taken all together summarize how
well the predictions agree with the available test results (Shinn, et. al, 2003).

Inherent in validation activities is the understanding, characterization and propagation of
different kinds of uncertainties, arising from sources such as model uncertainties,
numerical errors, parameter uncertainties, and lack of knowledge.  Some of these
different kinds of uncertainties are discussed in the sections below.

QUANTIFYING UNCERTAINTY

Types of Uncertainty
The quality of any validation of computer predictions is inextricably linked to
uncertainties.  The better we can do to represent and quantify the uncertainties in both
models and supporting data, the more useful these quantities are for making validation
assessments. In representing uncertainty we distinguish between two general types. The
first is the natural variability of things due to manufacturing processes–called variability.
Variability cannot be reduced, but only quantified. The sizes of grains of sand or the
specific shapes of a maple leaf are things that exhibit natural variability.  If we want to
predict either of these quantities we can only do so in an average sense for the population
of grains or leaves.  Another type of uncertainty is due to a lack of specific information,
which we could call, generally, complexity, to distinguish it from variability.  Complexity
can be reduced–with the acquisition of more information.  Complexity can result from
ignorance, from scarce data, from misleading or conflicting information, from lack of
knowledge, and from unknown biases. Collectively these various forms of non-
randomness contain forms of imprecision, ambiguity, non-distinctiveness, vagueness or
fuzziness. The total uncertainty (TU) in a problem is a combination of these two general
forms: variability plus complexity.

Representation of Uncertainty
While there are several useful theories to represent the various types of uncertainties (see
Klir and Wierman, 1999) we shall focus only on two of the more prevalent
ones–probability theory and possibility theory. The fundamental difference between these
two theories of quantifying uncertainty is that in probabilistic bodies of evidence all the
evidence is concentrated on the singletons of a universe of information, whereas in
possibilistic bodies the evidence is located on collections of nested sets within the
universe of information.  Both formalisms are uniquely represented by distribution
functions, but their normalization requirements are different.  The collection of values in



a probability distribution are required to add (or integrate) to unity, while for possibility
distributions the largest values are required to be unity (a condition called normality).
These differences in mathematical properties of the two theories make each theory
suitable for modeling various types of uncertainty and less suitable for modeling other
types.  For example, probability theory is an ideal tool for formalizing uncertainty in
situations where event frequencies are known or where evidence is based on outcomes of
a large number of independent and repeatable trials.  Possibility theory, by contrast, is
ideal for formalizing incomplete information expressed in terms of vague or ambiguous
terms, or where evidence supports conflicting events.

Features of Total Uncertainty
This paper summarizes a new procedure to assess the total uncertainty in the process of
validation assessment (Ross, et al., 2003).  It is based on the hypothesis that total
uncertainty should scale between two extreme conditions on uncertainty, i.e., between the
case of no-uncertainty and the case of maximum uncertainty.  If we make a prediction on
the response of some structural system and the level of uncertainty that we express in that
prediction is close to the extreme of no-uncertainty we can say that we are “highly
confident” in that prediction; on the other hand, if we are closer to the other extreme, the
case of maximum uncertainty, then we can say that we are not very confident in the
prediction.  Of more importance, however, is the fact that we can develop a “metric of
confidence” that will scale linearly with our quantified level of uncertainty and, in a
mathematical sense, measure the degree of closeness.

Calculation of Total Uncertainty
Suppose we are predicting the value of a variable of interest in a mechanics calculation,
say the maximum stress in a bar.  We then define the case of no uncertainty as one in
which all information and evidence supports only one value of the variable of interest
(stress) and there is no evidence on all other potential values of that variable, and in
which any probability is associated with a value equal to unity on one value of the
variable (stress) and zero probability on all other potential values of that variable.  The
other extreme of maximum uncertainty is then defined as the case where all potential
values of stress are completely possible (i.e., certain) and all potential values of the
variable are equi-probable (the case of a uniform probability distribution).  In the
literature, the forms of uncertainty associated with a possibility distribution are those
called non-specificity and discord.  By non-specificity we mean a kind of imprecision
which is connected with sizes of relevant sets of alternatives.  By discord we mean that
there is conflict among the various sets of alternatives.  The form of uncertainty
associated with a probability distribution is a kind of strife, where again there is conflict
among the various specific values of alternatives.  Probabilistic strife (conflict) is most
often term entropy, and it is different from possibilistic discord in that in the former all
evidence is nested on single values of the variable of interest, whereas the latter supports
evidence that is nested on collections, or sets, of various values of the variable of interest.
Hence, total uncertainty as used in the context presented here is defined as the
combination of possibilistic non-specificity with the probabilistic entropy, or conflict.
We present here a new procedure to combine these uncertainties; other combination
procedures in the literature first reduce the various uncertainties to the bit-level (log2)



before a combination is performed, or the various uncertainties are used to formulate a
data-tuple (see Klir and Wierman, 1999).

We begin the development of the total uncertainty by first defining an uncertainty matrix,
which contains the possibilistic uncertainty vector in its first column and the probabilistic
uncertainty vector in its second column; we shall term this matrix A. For a variety of
compelling and intuitive reasons (Ross, et al., 2003) a procedure known as singular value
decomposition (SVD) was chosen as a means to calculate total uncertainty.  Many of
these reasons have to do with an analogy of this approach to the extraction of modal
frequencies from a model of a structure undergoing dynamic motion.  In this process we
perform a modal extraction of frequencies using an eigenvalue analysis of the structure.
The frequencies from the eigenvalue analysis represent the total energy of the structure
during vibration in its normal modes (eigenvectors).  In our analogy for the
characterization of uncertainty, the singular values of our SVD analysis represent the
total energy of the uncertainty in the matrix A, or more simply the total uncertainty.

To begin this development we start first with our decomposition,
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where A is an m x 2 matrix of columns expressing the two types of uncertainty, U is an
orthonormal m x m matrix whose columns are the left singular vectors of A, S is an m x 2
matrix containing the singular values of A, and V is an 2 x 2 orthonormal matrix whose
columns are the right singular vectors of A.  Parameter m is the length of the two
uncertainty vectors.

What is of particular interest is the fact that the singular values in the matrix S contain the
“energy” or the total uncertainty of the quantifies expressed in A.  The expression for
Total Uncertainty (TU) is then given by:
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where, 
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, where si is the ith singular value in S, where, pmax is the

largest possibility value in the first column of A, and where pmax is the largest probability
value in the second column of A. Finally, the extreme cases for no-uncertainty and
maximum uncertainty are given by the expressions, TU = 0, and TU= 2(m-1) (see Ross,
et al., 2003).

CASE STUDY

The methods described in Eqns. 1-2 were organized and implemented for a case study
involving the crushing of a hyperelastic foam from a simple impact loading.  Of interest



was the computational prediction of the peak acceleration within the foam.  Although
experiments were performed on this example (see Figure 1.b), only the uncertainties
involved in a computational prediction of the peak accelerations were considered. A
finite element code was used to model the system.   Two types of analyses were
performed on the uncertainties. First, probability theory was used to assess the
uncertainties of the test results for the peak acceleration (PAC). Second, possibility theory
was applied to various model configurations, whose parameters included such variables
as friction coefficient, amount of preload applied, and impact angles of the drop table (see
Figure 1.a). For example, uncertainties from previous test results on similar foam, simple
first principle calculations, choices of material models, equation solvers, and boundary
conditions were represented by possibility distributions. Table 1 contains the interval
values of PAC from the various models and sources of information.   These six intervals
are formulated into a p-df (possibility distribution function) using a method developed in
a dissertation by Donald (2003).   That p-df and the corresponding probability density
function (pdf) of the test results for PAC are plotted in Figure 2.

Figure 1. Shock wave through hyper-elastic foam. (a) the experimental set-up and (b) the input
and output signals for 10 tests.

Table 1.  Intervals from Different Model / Information Sources.
Model Lower Value of

PAC
Upper Value of
PAC

SDOF, Material Models [2 cubics] 0.2480 0.2850
SDOF, Material Models [cubic, bilinear] 0.8570 0.1250
SDOF, HKS/“ABAQUS” 0.2850 1.6435
Preload in Bolt [min, max] 1.1943 2.4771
Hand calculation on I-mv [.01s, .001s] 0.3000 3.0000
Old test data range from 3 gages 1.2170 1.5940

In Eqns. 1-2 we used m=30 as the length of the probability and possibility distributions.
Using these equations we establish that the total uncertainty expressed by the
combination of probabilistic and possibilistic types is equal to a value of TU = 17.44,
which is 30% of the maximum uncertainty that the problem could contain (i.e., we get
TUmax = 58).  What this means is that the problem does contain a level of uncertainty that



is closer to the case of no-uncertainty than it is to the case of maximum uncertainty.
More important, if additional analyses on this problem were to be performed, and the
value for TU decreased below 17.44, this would equate to a situation where the
confidence in the prediction of peak accelerations would be higher.

Figure 2. pdf for the tests and p-df for the models (PAC is in 103 g’s).

SUMMARY

In this paper we have discussed the importance of validating our numerical predictive
capability to assess various issues associated with a structures response to external
disturbances.  Such issues as a structure’s reliability, its safety margin and its structural
behavior as it ages are all conditions that are currently predicted by numerical codes.
Implicit in the code predictions are the uncertainties that are inherent in the systems
configuration, in the external disturbances, and in the knowledge we have about any
confirmatory experimental or real world response data.  We have proposed a new method
to assess the total uncertainty in a physical system; such an assessment is necessary to
fully exploit the process of validation.  This new method is still under development, but
significant promise has shown that the new method agrees with assessments of the total
uncertainty in well-established canonical cases published previously (Klir, 2003). One of
our current investigations is to segregate the TU information in Eqn. 2 into proportions
that relate to the amount of non-specificity and to the amount of conflict which together
combine to form the total uncertainty.
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