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ABSTRACT 
We present a visual analytics paradigm and a system prototype for 
exploring web-scale graphs. A web-scale graph is described as a 
graph with ~one trillion edges and ~50 billion vertices. While there 
is an aggressive R&D effort in processing and exploring web-scale 
graphs among internet vendors such as Facebook and Google, 
visualizing a graph of that scale still remains an underexplored 
R&D area. The paper describes a nontraditional peek-and-filter 
strategy that facilitates the exploration of a graph database of 
unprecedented size for visualization and analytics. We demonstrate 
that our system prototype can 1) preprocess a graph with ~25 billion 
edges in less than two hours and 2) support database query and 
interactive visualization on the processed graph database afterward. 
Based on our computational performance results, we argue that we 
most likely will achieve the one trillion edge mark (a computational 
performance improvement of 40 times) for graph visual analytics 
in the near future. 
 
Keywords: Visual analytics, graph visualization, web-scale graph, 
NetFlow, triple-store, RDF, SPARQL, high-performance 
computing, Linux cluster 

1 INTRODUCTION 
In today’s big data era, a web-scale graph is often described as a 
graph with approximately one trillion edges and approximately 50 
billion vertices [4][5]. Exploring a web-scale graph is currently a 
hot topic in cloud-computing and cyber-analytics communities led 
by major internet vendors such as Google, Facebook, Microsoft, 
and Amazon. Although cutting-edge graph exploration 
technologies, such as Giraph [2] and Pregel [19], have been 
reported in the literature, none use visualization in their analytical 
solution. This paper investigates the web-scale graph exploration 
problem from a new visual analytics perspective. 

Unlike exascale scientific data that could potentially be analyzed 
through in situ visualization [6] on the same machine that models 
the data, web-scale graphs are often harvested from outside the 
visualization machine and thus create a laundry list of big-data 
problems in volume, velocity, and variety. Ingesting the data alone 
will become a daunting hurdle to overcome because a web-scale 
graph will occupy 29.1TB when stored as an edge list, 29.5TB as 
an adjacency list, and 271EB (exabyte) as an adjacency matrix [4]. 

We propose to work around the size problem by creating a new 
peek-and-filter visual analytics paradigm, which provides a 
glimpse of the underlying data and allows users to decide if they 
want to commit to a potentially costly visualization step. We further 
develop a visual analytics prototype that applies the peek-and-filter 
strategy twice, separately on both high-performance computing 
(HPC) and desktop levels to explore benchmark graphs. 
Preliminary results indicate that the system prototype can 1) 

preprocess (i.e., data ingest and index creation) benchmark graphs 
with ~25 billion edges in less than two hours and 2) support 
database query and visualization on the processed graph database 
afterward. Compatible technologies reported in the literature would 
have required days to just ingest graphs of similar sizes [10]. 

The paper describes the proposed paradigm and the system 
prototype that integrates a visualization frontend and a resource 
description framework (RDF)-based [23] graph database backend, 
evaluates computation performance results using benchmark 
datasets, shares user experiences and lessons learned, and discusses 
our ongoing effort to scale up from exploring 25 billion to one 
trillion edges.  

2 RELATED WORK 
The graph analytics literature is rich and abundant, but only a few 
focus on web-scale graphs. Burkhardt and Waring [4][5] give an 
inspiring discussion of web-scale graph problems and challenges 
on topics such as exploration and analytics, algorithm, hardware, 
and storage in a real-world setting. The term “web-scale” as 
described in Burkhardt and Waring [4][5] is sometimes referred to 
as “Google-scale” or “Facebook-scale” in the literature. 

We organize the rest of the related-work discussion into two 
categories: graph visual analytics and web-scale graph processing. 
Although the former does not directly address web-scale graphs 
and the latter does not involve visualization development, together 
they inspired and informed the R&D of the peek-and-filter 
paradigm discussed in this paper.  

2.1 Big Graph Visual Analytics  
We agree that the graph size that seems big today is different from 
what seemed big only a few years ago. Here we highlight a few 
notable works that address different aspects of big graph visual 
analytics from exploration, to layout, to user interaction.  

Rohrer et al. [24] give a thorough review of big-graph visual 
analytics through practical examples. The paper discusses the 
research challenges of big data analytics, describes two working 
visual analytics tools in social network and text repository 
visualization, and highlights the visual analytics contests at the 
annual IEEE VAST Conference.  

Instead of machine-automated or user-assisted visualization of 
big graphs, Yuan et al. [33] apply a crowdsourcing approach to 
develop an intelligent graph layout that merges many subgraphs 
submitted by a crowd. The big-graph layout approach, which seeks 
both symmetry and aesthetics in graph visualization, can be 
extended to analyze other crowdsource-based data. 

Hadlak et al. [11] introduce an interesting concept of in situ 
visualization, which allows users to interactively switch to different 
visualization techniques (and thus the focus of analysis) during the 
course of big-graph exploration. Notice that the use of the term “in 
situ” here is different from that used in scientific visualization [6].  

In big-graph visualization, the problems caused by drawing 
graph edges are far more difficult to address than those brought by 
drawing graph vertices. Xu et al. [32] conduct a user study on 
multiple prevailing techniques of drawing graph edges. The study 
highlights the strengths and weaknesses of different edge-drawing 
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techniques for different big graph layout preferences and 
requirements.  

Big graph visual analytics is seldom supported by one single 
visual technique but instead employs a multifaceted array of 
techniques that addresses and captures multiple aspects of graph 
visual analytics in concert. Hadlak et al. [12] give the most 
complete survey study to date on multifaceted graph visualization 
categorized in four facets of partitions, attributes, time, and space. 
The paper cites more than a hundred examples in four categories of 
applications. Another thorough survey on big graph visual analytics 
is Von Landesberger et al. [28], which emphasizes individual 
visualization techniques instead of multifaceted techniques. 

2.2 Web-Scale Graph Processing 
In recent years, there has been a push toward supporting web-scale 
graph analytics. Such support is the goal of these software 
solutions: Pregel [18], Giraph [2][7][8], Mizan [16], GraphLab 
[17][18], and GPS [25]. 

All are graph-based in their data abstraction and expose an API 
that encourages programmers to “think like a vertex.” This vertex-
centric approach is built around a programming model where the 
user describes actions to be taken at each vertex of the graph given 
current inputs. The strategy works by major iterations of vertex 
calculations and terminates when all of the vertices have agreed that 
the computation is done. This programming model works well for 
algorithms such as PageRank. 

Some specific specializations on the “think like a vertex” theme 
are Mizan and GraphLab. Mizan works to optimize performance 
based on load balancing and graph partitioning [15]. GraphLab 
focuses more on machine learning than general graph algorithms 
[16][17].  

3 GRAPH VISUAL ANALYTICS CHALLENGES 
We discuss four challenges facing web-scale graph visual analytics. 

3.1 Size Matters 
Much of today’s big graph visualization R&D focuses on what we 
characterize as micro exploration, as illustrated in Figure 1. Part of 
the visual analytics process often happens at the individual vertex 
and edge levels, such as pinpointing a particular person or 
transaction in a social network through, for example, the inspection 
of a force-directed graph layout.  

When the underlying graph size reaches web-scale, we enter the 
largely unexplored territory of macro exploration in graph visual 
analytics. Graphs of this size will most likely be stored on and 
processed by an HPC machine. Everything from visualization, to 
computation, to user interaction designed for micro exploration will 
have to change to adapt. One visualization goal for macro 
exploration is to break down the web-scale graph to a size at which 
micro exploration can be conducted.  

3.2 Cognitive Scalability  
Most agree that there is no Moore’s Law for cognitive activities. 
Human cognitive biases often inhibit understanding of graph 
structures. When a graph grows to thousands to tens of thousands 
of edges, structures within a visual layout will start to blend in like 
background white noise.  

When the graph size reaches web-scale, the role of visualization 
will most likely be limited to showing the properties and 
characteristics of the graph instead of the graph itself.  

3.3 Multilevel Visualization Scalability 
Multilevel visualization is a proven strategy found in big-graph 
visualization literature [14][31]. Given a big dataset G, a multilevel 
visual analytics approach generates an increasingly coarsened 
hierarchy G0, G1 … Gi … Gn such that the fine levels provide local 
details and the coarsened levels give the overall structures of G. 
The multilevel approach addresses many big graph visual analytics 
problems when the graph size is in the range of tens of thousands 
to hundreds of thousands of edges.  

When the graph size reaches web-scale, the number of 
hierarchical levels quickly escalates. A trillion-edge graph will 
have as many as 40 levels within a dyadic hierarchy. Navigating 
such a deep hierarchy and searching for answers can itself be a real 
challenge. 

3.4 Graph Complexity and Database 
The fourth challenge is the complexity of the underlying data, 
which is precisely defined as an attributed, directed, multi-graph. 
The graph vertices have attributes. The graph edges have a direction 
and may have multiple attributes. There may be millions of edges 
with different directions and/or attribute values between any two 
graph vertices.  

Using a relational database to manage such a complex graph will 
inevitably create many normalized tables that will need to be joined 
before a database query can be processed. The requirement of 
joining these tables (i.e., expanding the schema) will become 
increasingly costly and eventually prohibitive as the graph size 
continues to increase.  

Our current system prototype uses RDF to address some of the 
above performance issues brought on by a relational database. See 
Sections 5.1 and 5.2 for further details on RDF. 

4 TRADITIONAL AND NEW EXPLORATION APPROACHES 
We argue that when exploring web-scale graphs, the role of 
visualization will be better off to move away from the traditional 
drawing-centric approach that surrounds the visual analytics with 
a graph depiction and move to a peek-and-filter approach that first 
surmises the cost and consequence of different queue options 
before deducing the scope of visual analytics.  

Here we will use two graph analytics tools developed at the 
Pacific Northwest National Laboratory (PNNL), GreenHornet [31] 
and T.Rex [27], to illustrate the strategy differences between the 
two approaches. In Section 5, we will show that the impacts of the 
paradigm change go beyond the user interaction design and spread 
into the design of the analytics and computation infrastructure.  

4.1 Drawing Centric  
We first use GreenHornet [31] to demonstrate the concept of the 
drawing-centric exploration approach. Other prevailing graph 
analytics tools such as Gephi [9] and Renoir [22] also have a similar 
interaction design. Figure 2 describes one way to use GreenHornet 
to visually analyze a graph.  

In step 1, a user brings up a drawing layout of the targeted graph 
and then adjusts the visualization resolution (drawing details) using 
a scroll widget in step 2. In step 3, the user browses the data using 
histograms on the right and a spreadsheet at the bottom. In step 4, 
the user can drill into the graph by aggregating the vertex/edge 
parameters through different selection means. Step 5 redraws the 
graph after parameter aggregation. The above steps will repeat until 
an answer is found or a theory is developed. The graph drawing 
remains the centerpiece of exploration throughout the process. 

Figure 1: Data size ranges for micro and macro explorations. 
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4.2 Peek-and-Filter Centric  
Figure 3 uses a series of T.Rex screenshot cut-offs to illustrate the 
concept of the proposed peek-and-filter approach. (We will 
describe the T.Rex system in detail in Section 6.3.) The example in 
Figure 3 uses an open source NetFlow dataset provided by the IEEE 
VAST Challenge 2013 [15]. 

In step 1 of Figure 3, we “peek” the data and find the data size 
(6,939,698 NetFlow records) too big for graph visualization. Step 
2 shows a facets tool, which is a spreadsheet-like scrollable data 
table. Inside the first facet highlighted by a red rectangle under the 
source IP address (SIP) column, the SIP address 10.15.7.85 (upper 
left) has 1017458 (upper right) occurrences in the NetFlow dataset 
depicted temporally by the histogram (with green spikes) 
underneath the SIP address and counter within the red rectangle. 

Assume we select the facet with SIP equal to 10.9.81.5 (i.e., the 
second facet under the SIP column), the corresponding facet in step 
3 now turns green. All facets in the other columns are updated 
instantly. For example, the counter of destination IP (DIP) address 
171.10.014 changes from 490657 in step 2 to 21478 in step 3 (as 
shown by the red arrow on the right). One of the spikes in the 
corresponding histogram (highlighted by a red circle) turns from 
green in step 2 to gray (i.e., filtered away) in step 3 after the SIP 

selection. The filtered graph size now has 291,323 NetFlow records 
as shown in step 4. 

To complete the visual analytics cycle, the filtered data will be 
visualized within T.Rex, as described later in Sections 6 and 7. 

4.3 Distinguish from the Conventional Wisdom 
Shneiderman’s visual information-seeking mantra, which states 
“overview first, zoom and filter, then details-on-demand,” has 
influenced the thinking of the entire information visualization 
community for nearly two decades. Our peek-and-filter concept 
represents a paradigm shift from conventional belief of using an 
overview visualization to guide data analysis to the new belief of 
first determining the right big-data mix before conducting visual 
analytics. The former is generally considered a top-down approach 
of visualizing the whole before the parts. The latter discourages 
visualizing the whole dataset at any point during the exploration.   

5 DATA MANAGEMENT, DATABASES, AND COMPUTATION 
Before introducing the system prototype in detail, we first describe 
the graph databases and hardware systems that power the prototype 
and explain the rationale behind our system choices. Bear in mind 
that the plug-and-play nature of our system design allows future 
modification to the infrastructure, such as replacing the graph 
database or the visualization for different analysis purposes.  

5.1 Resource Description Framework (RDF) 
It was determined early in the project that big graphs, as described 
in Section 3.4, would best be represented and stored as RDF [23] 
triples in the form of subject-predicate-object (s-p-o), e.g., 
Zuckerberg (subject)-is CEO of (predicate)-Facebook (object).  

In an RDF-based system, the predicate of a triple is explicitly 
defined, which provides greater flexibility and scalability for 
database maintenance and query optimization. More importantly, 
the triple s-p-o design supports federalized (or decentralized) 
queries naturally and avoids costly schema expansion like the 
relational database queries.  

Today’s prevailing RDF data stores include Facebook’s Open 
Graph and Google’s RDFa. To power our system prototype, we 
implement a customized version of SPARQL [26]—an RDF query 

Figure 2: Drawing-centric visual analytics using GreenHornet. 

Figure 3: Peek-and-filter centric visual analytics using T.Rex. 
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language—in GEMS [10][20][29] (Section 5.2) running on a 
customized HPC machine (Section 5.3). 

5.2 GEMS 
GEMS [10][20][29] is developed at PNNL for exploring big graphs 
on HPC machines. The command-line-based system implements a 
subset of SPARQL query language with customized GEMS 
extensions to optimize big graph analytics. GEMS is scoped to be 
a fast data analysis tool for big graphs instead of a general graph-
mining tool. It is specifically designed to explore and exploit big-
graph properties with significantly enhanced computation 
performance.  

Table 1 highlights a selected set of foundational SPARQL 
commands that extract information such as graph properties and 
feature distributions [1]. We avoid SPARQL queries that are 
semantic-based, such as relying on type-inference (e.g., rdf:type 
and rdfs:subClassOf) [26], which allows us to adapt our techniques 
to non-RDF graphs. Using the retrieval results from Table 1, GEMS 
can further report additional results such as density (i.e., # of 
vertices divided by # of edges) of both ontology and instance 
vertices and edges. 

  
Table 1: SPARQL queries with customized GEMS extensions. 

 SPARQL Return/Support 

Pr
op

er
tie

s 

SELECT (COUNT (DISTINCT ?s) AS 
?no) WHERE  
{{?s ?p ?o} UNION {?o ?p ?s}} 

# of vertices 

SELECT (COUNT (?p) AS ?no) WHERE 
{?s ?p ?o} 

# of edges 

SELECT (COUNT (DISTINCT ?s) AS 
?count) WHERE {?s a ?class} 

# of vertices 
with ≥ 1 type  

Co
un

ts
 

SELECT (COUNT (DISTINCT ?s) AS 
?no) WHERE {?s ?p ?o} 

# of subject 
vertices  

SELECT (COUNT (DISTINCT ?o) AS 
?no) WHERE {?s ?p ?o}; 

# of object 
vertices  

SELECT (COUNT (DISTINCT ?p) AS 
?no) WHERE {?s ?p ?o} 

# of predicates 

Di
st

rib
ut

io
ns

 

SELECT ?p (COUNT (?s) AS ?count1) 
WHERE {?s ?p ?o} GROUP BY ?p 
ORDER BY DESC (?count1) 

Predicate 
distribution  

SELECT ?s (COUNT (?p) AS ?count1) 
{?s ?p ?o} GROUP BY ?s ORDER BY 
DESC (?count1) 

Subject 
distribution 

SELECT ?o (COUNT (?p) AS ?count1) 
{?s ?p ?o} GROUP BY ?o ORDER by 
DESC (?count1); 

Object 
distribution 

5.3 High-Performance Computing System 
Our system prototype is powered by an HPC system known as 
PUMA. Located at PNNL, PUMA is a Linux cluster comprising 32 
nodes of Intel Xeon E5-2680 processors running at 2.8 GHz, eight 
Intel Xeon Phi 5110P coprocessors, and eight NVidia K40 GPUs. 
Each of the 32 nodes contains 20 physical cores, with a total of 640 
cores. The system operates on both FDR InfiniBand and traditional 
Gigabit Ethernet networks. 

PUMA is particularly equipped with abundant memory to meet 
the unique compute demand of in-memory applications such as big-
graph analytics. It is known that “Graph problems that fit in 
memory can leverage excellent advances in architecture and 
libraries” [4]; PUMA has 24.5 TB of memory installed, divided 
evenly across the 32 nodes (i.e., 768 GB per node). 

New hardware is currently being acquired to improve the 
performance of the PUMA infrastructure. We estimate that we will 
need ~24TB of memory to fit a trillion-edge graph (assuming 24 
byte per graph edge or s-p-o triple) plus another ~50TB for 

indexing and intermediate computation space to operate. When the 
system is fully established, it is promised that exploring big graphs 
using GEMS on PUMA will scale to O(1T) graph edges [10][20]. 

6  SYSTEM PROTOTYPE  
This section gives a design overview of the proposed peek-and-
filter paradigm and describes its implementation in detail.  

6.1 System Design Overview 
Figure 4 depicts an overview of the peek-and-filter implementation 
in the system prototype. On the left (red rectangle) is the graph 
database backend that runs GEMS on PUMA. On the right (orange 
rectangle) is a visual analytics frontend that runs T.Rex on a 
desktop computer. After a graph with tens of billions of edges (left) 
is ingested into a graph database, a user can peek-and-filter graph 
subsets using SPARQL commands in GEMS and send up to 
millions of graph edges (top) downstream to T.Rex (right) for 
visualization. Within the T.Rex frontend (i.e., inside the orange 
rectangle), there is another “peek and filter, then visualization” loop 
for users to fine-tune their explorations repeatedly until a final 
answer such as a vertex or a subgraph is identified (on the far right).  

A major difference between the two peek-and-filter 
implementations in Figure 4 is that the one within T.Rex (orange 
rectangle) provides more powerful interactive visualization and 
analytical capabilities that can only be scaled up to hundreds and 
thousands of edges on a panel display. In other words, we use 
GEMS to address challenges 1 (size) and 4 (complexity) and T.Rex 
to address challenges 2 (cognition) and 3 (interaction) as described 
earlier in Section 3. 

6.2 Graph Database Backend 
GEMS [10][20][29] is a customized graph database system that has 
continued to evolve as algorithms are developed and hardware is 
introduced. As of this writing, GEMS is able to preprocess graphs 
with 25 billion edges in less than two hours using only 16 of the 32 
nodes on PUMA. The preprocessing step 1) ingests the graph in n-
triples format as an ASCII file and 2) creates both s-p-o and o-p-s 
indices that facilitate SPARQL queries afterward. 

GEMS has a web-based interface that allows users to enter 
SPARQL commands and a second command-line interface that 
supports mainly software development and testing on PUMA.  

6.3 Visual Analytics Frontend  
T.Rex [27] is a visual analytics system for exploring transactional 
data that can be formulated conceptually as a graph, such as 
NetFlow data. Using a suite of visualization views along with a 
high-performance database server, T.Rex seamlessly supports the 
peek-and-filter visual analytics paradigm described in Section 4.2.  

Figure 4: System design overview. 
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Figure 5 shows a screenshot of T.Rex in action. Individual 
visualization views (A through K in the figure) can be repositioned, 
resized, or undocked from the main window. The Summary view 
(A) provides high-level contextual information, such as data size, 
current selection size, and, optionally, statistics (i.e., data peeking). 
This view also contains buttons to filter the dataset or reverse the 
selection (i.e., data filtering). Reversing the selection is a powerful 
tool to quickly select all the unselected records during exploration.  

T.Rex’s Facets view (B) is only applied to categorical data, such 
as an IP address. This view is designed to show frequently 
reoccurring values from dataset columns and what other values co-
occur in the other columns of the dataset. The histograms embedded 
within the facets provide temporal awareness of these co-
occurrences, as depicted in Figure 3.  

The Graph view (C) uses a highly customized multiscale graph 
layout algorithm similar to the one implemented in GreenHornet 
[31] for big graph visualization. A user can select any two data 
columns to use as vertices and indicate if the drawing is a bi-partite 
graph. This view shows connectivity patterns, such as one-to-one, 
one-to-many, high connectedness, or islands of communication.  

The Scatterplot view (D) plots a numeric field against either 
another numeric field or a date/time field. The Matrix view (E) 
shows highly correlated pairs of values contained in two data 
columns of the user’s choosing. 

The Group view (F) allows the grouping of a set of selected 
records and the inclusion of a group color that identifies the 
corresponding group members in the Graph and Scatterplot views. 
The group colors provide an effective way to specify different 
models for reasoning or organization and to perform analysis at a 
group level rather than at a record level. 

The Timeline view (G) is a histogram visualization for temporal 
analysis and data selection. A corresponding Time Player view (H) 

animates the selected data in the Graph and Scatterplot views 
according to the user-defined step increment.  

The Data Grid view (I) is a spreadsheet-like table browser. 
Records with a large number of columns can be inspected 
individually using the Record Viewer (J). 

The Filters and Dataset Column views (K) allow selections of 
both table rows and columns using one or more filters. When a 
dataset is filtered, the views of the T.Rex application hide any 
records that have been removed by the filter. Filters can be created 
to focus on data subsets, excluding records that are not part of the 
active analytic context. 

T.Rex was developed using a client/server architecture to 
maximize the user interaction and visual analytics capabilities and 
to use the processing power of a backend server, such as GEMS. 
T.Rex is a desktop-installed Java application developed using the 
Eclipse RCP framework. Each visualization is a plugin, giving 
added flexibility for custom deployments that require only a subset 
of the full functionality of the tool. Interested readers are 
encouraged to watch our T.Rex video [27] for additional examples.  

7 PEEK-AND-FILTER DEMONSTRATIONS 
We present a case study that demonstrates a series of peek-and-
filter visual analytics tasks using a modest-sized NetFlow graph 
with ~6.9M records or ~627M triples provided by the IEEE VAST 
2013 Challenge [15]. Numerous answers of the challenge have 
been posted online and published in the literature since the 2013 
contest. We use the NetFlow dataset in our discussion here not to 
solve the challenge but to demonstrate how one can use the peek-
and-filter approach in a semi-realistic cyber-analytics setting. 

Figure 6 describes a series of “peek-and-filter then visualization” 
tasks to analyze the graph. Tasks highlighted in orange rectangles 

Figure 5: A screenshot of T.Rex analyzing a dataset with 6,939,698 NetFlow records or 627,572,995 triples. 
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are carried out by GEMS on PUMA and 
the ones in green are executed by T.Rex on 
a desktop computer. 

The first step involves GEMS ingesting 
an RDF version of the VAST dataset. It 
takes GEMS 134 seconds to create the 
graph database from the dataset using 16 
PUMA nodes. Using 8 PUMA nodes, 
GEMS ingests the dataset in 207 seconds. 
And with only 4 PUMA nodes, GEMS 
requires 364 seconds to ingest the dataset. 
Eight tasks (T1-T8) are illustrated in 
Figure 6 and explained below.  

T1. After the graph database is created, 
the first knowledge learned about 
the graph is probably its size. The 
SPARQL command below reports 
that there are 624,572,955 edges in 
the graph database. Obviously, 
there are too many edges for an 
effective graph drawing 
visualization.  

SELECT (COUNT (?p) AS ?no) {?s 
?p ?o} 

T2. For a NetFlow dataset with 
potentially up to millions of edges 
between a pair of IP addresses, perhaps a more interesting 
question to ask is how many distinct IP addresses are in the 
graph. The following SPARQL command reports that there 
are only 1440 unique IP addresses, implying that the graph 
has 1440 vertices. 

SELECT (COUNT (DISTINCT ?s) AS ?no) {{?s ?p ?o} 
UNION {?o ?p ?s}} 

T3. The lower number of IP addresses in T2 suggests that we 
may be able to explore the graph using some basic 
visualization. The first visualization that comes to mind is a 
temporal distribution of the number of IP addresses per day, 
which could be computed using the following SPARQL 
command.  

SELECT ?c (count(?c) as ?cnt) WHERE {{?a 
<tag:pnnl.gov,2015:NF#srcIP> ?c} UNION {?a 
<tag:pnnl.gov,2015:NF$dstIP> ?c}} GROUP BY ?c 

T4. The results of T3—15 integers for 15 days—are sent to 
T.Rex’s Timeline view for temporal visualization. The 
distribution quickly exposes two distinct structures in two 
consecutive weeks—a skewed pattern (green in T4) in the 
first week and a twin-peak pattern (red in T4) in the second 
week. The latter resembles a potential brute force “scan first 
and then attack” effort.  

T5. To better understand the potential anomalies between the 
two peak days in the second week, all the actors (or IP 
addresses) involved are extracted from the graph database 
using the following SPARQL command for further 
investigation on T.Rex. The selected days are highlighted 
in green in the histogram of the Timeline view.  

SELECT * WHERE {{?a <tag:pnnl.gov,2015:NF#stDate> 
"2013-04-11"} UNION {?a 
<tag:pnnl.gov,2015:NF#stDate> "2013-04-14"}} 

T6. T.Rex’s Facets view is used in this task to answer questions 
such as who are the major actors (either source or 

destination IPs) involved in the two-day period. Of the five 
most frequently visited destination IPs, the visualization 
show that the first IP (172.30.0.4) was connected twice as 
frequently as the second one (172.10.0.4) and about 90 
times more than the fifth one (239.255.255.250), as 
highlighted by the red arrows in Figure 6.  

T7. The numbers identified in T6 trigger a closer inspection of 
the original NetFlow records using T.Rex’s Data Grid view, 
which is a spreadsheet with enhanced notational features. 
After scrolling down a few pages, we observe that records 
with the few IPs identified in the T6 vary little and a 
scrolling list is not the right tool to explore the hidden 
structures. 

T8. Based on the findings in T7 and observations made earlier 
such as the graph size, we determine that it is now 
appropriate to use T.Rex’s Graph view to interactively 
explore the layout of the extracted graph.  

8 COMPUTATION PERFORMANCE  
We use the Berlin SPARQL Benchmark (BSBM) dataset generator 
and accompanying SPARQL queries [3] to demonstrate the 
computation performance of GEMS that powers the backend of our 
system prototype. BSBM provides elaborate datasets and advanced 
SPARQL queries that go beyond simple database retrieval and data 
lookup but instead ask questions such as “list the top 10 products 
most similar to a specific product, rated by the count of features 
they have in common.” 

Because the primary design goal of GEMS is to extract a 
reasonable amount of graph data for interactive visual analytics on 
T.Rex, we focus our computation performance study on graph 
property queries that facilitate the data extraction. Table 2 shows 
the computation results of a 25B-edge BSBM benchmark graph. It 
takes less than two hours for GEMS to ingest the data and set up 
the graph database for queries using only16 nodes on PUMA.  We 
note that graph data at this scale cannot fit in to a single system’s 
memory, so either paging or communication is required, which 
imposes a significant burden on overall computation time. 

Figure 6: A graphical illustration of a peek-and-filter demonstration. 
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Table 2: Query times for different SPARQL queues running on 
PUMA using 16 nodes.  

Query Time (s) 
# of vertices* 2109 
# of edges* 341 
# of subject vertices* 1034 
# of object vertices* 974 
# of predicates* 798 
Predicate distribution* 1180 
Highest out-degree: SELECT ?s (COUNT (?p) 
as ?c) {?s ?p ?o} GROUP BY ?s ORDER BY DESC 
(?c) LIMIT 100 

1496 

*The corresponding SPARQL commands are described in Table 1.  

The time results in Table 2 are generated using only 50% (16 of 
the 32 nodes) of available CPUs on PUMA. Additionally, the 
current implementation of GEMS doesn’t use the eight NVidia K40 
GPUs that, with Tesla accelerators, can be up to 10 times faster than 
with CPUs (Intel Xeon E5-2680) alone when processing data. With 
the combination of our progress on supporting larger datasets and 
current hardware trends, we expect to support one trillion edges in 
the very near future. 

9 DISCUSSION 
We discuss major contributions of the paper, lessons learned, and 
ongoing work that addresses the challenges ahead.  

9.1 Major Contributions 
The paper presents a non-traditional peek-and-filter paradigm for 
big graph visual analytics and a working system prototype that 
facilitates the exploration of a graph database of unprecedented size 
for visualization and analytics. Here we summarize our 
contributions from three different perspectives: 

Big Data Visual Analytics – Conventional wisdom in 
visualization such as Shneiderman’s visual information-seeking 
mantra will fall short when applied to big graph visual analytics 
problems. In our case, merely accessing an entire web-scale graph 
within a reasonable timeframe will be a stretch; getting a productive 
overview of the graph in visual form will be unthinkable because 
of the cognitive- and system-related challenges described in [30]. 
The peek-and-filter approach provides a viable solution to address 
some of these challenges found in big data visual analytics.  

Big Data Computation Support – Our high-performance graph 
database system, GEMS, takes 1) less than two hours to ingest a 
graph database from a RDF graph with ~25 billion edges and 2) 
about 10-30 minutes to query against the graph database afterward. 
Compatible technologies reported in the literature would have 
required days to just ingest graphs of similar sizes [10]. 

Practicality and Applicability – Our desktop-based frontend, 
T.Rex, allows users to access big graph databases through GEMS 
and visually explore millions of transactional records (NetFlow in 
our case) extracted from the database. Because much of the heavy-
lifting computational work is done on the HPC backend, we can run 
T.Rex on a modest computer such as a first-generation Microsoft 
Surface Pro tablet, as depicted in Figure 7. 

9.2 Lessons Learned 
Our lessons learned discussion focuses on three main areas: graph 
database, I/O bound, and visualization scalability. 

Graph database – We use RDF to address many big-graph query 
issues brought by the costly schema expansion of a relational 
database. As the underlying graph size approaches web-scale 
ranges, we encounter thresholds beyond which it is necessary to 
distribute the graph across multiple disjoint memory systems as the 
only viable option for an in-memory database. Running graph 

search and retrieval computations on a distributed cluster adds 
performance pressure on the interconnection network and can slow 
the computation by several orders of magnitude. 

I/O bound – Once in the realm of needing a distributed cluster 
platform, there are two major challenges to achieve good 
performance: latency of referencing data stored in a remote node 
and interconnection network throughput. The GEMS system 
overcomes the latency by employing a massive multithreading 
approach. Once a request to reference data in a remote node’s 
memory is made, the task is moved aside and another task is 
brought into the core to work on. As long as there are enough tasks 
so that there is always something useful for a core to be doing, the 
latency is “tolerated.” GEMS also uses well-known small message 
aggregation techniques to efficiently use the interconnection 
network in spite of the tendency for graph computation to involve 
small memory requests from remote nodes that result in a large 
number of small messages being sent out on the network.  

Visualization scalability – To our surprise, the biggest and most 
immediate challenge facing T.Rex users and developers is not the 
very limited (and fixed) number of display pixels but the database 
response time that powers the query graphics from the backend. We 
believe that we can continue to increase the data volume and 
analysis capacity of T.Rex by first addressing the previous two 
lessons learned (i.e., graph database and I/O bound) and only then 
considering a new generation of visualization technology that will 
optimize the overall user experience. 

9.3 Ongoing Work  
To embrace a wider range of graph database applications, we are 
looking at using a property graph model [21] (attributed, directed, 
multi-graph) as the backend to our workflow. Such a change will 
bring new challenges to the T.Rex part of our strategy because the 
user will want the ability to see all of an edge’s attributes and 
associated values. Displaying all these attributes and values will 
result in increasing the memory footprint of a subgraph sent from 
the backend to the T.Rex frontend.  

The more general property graph data model will affect the graph 
search and retrieval steps by increasing the demand on the 
interconnection network. To offset the size of an edge that must 
transit the interconnection network, we are exploring how much of 
a reduction we will get in the number of vertices and edges by 
moving from an RDF graph to a property graph representation. 

10 CONCLUSION  
The paper presents a web-scale graph visual analytics paradigm and 
a proof-of concept system prototype that, based on the computation 
and analytical results reported in this paper, will potentially be 
scaled to a trillion edges in the near future. We believe that the 
peek-and-filter approach is a viable option to address some of the 
web-scale graph exploration and analytics challenges. We will 

Figure 7: Running our big graph visual analytics 
prototype on a Microsoft Surface Pro Tablet. 
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continue to report the R&D progress and results of our web-scale 
graph visual analytics work at this venue in the future.  
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