

A Visual Analytics Paradigm Enabling Trillion-Edge Graph Exploration

Pak Chung Wong1,*, David Haglin1, David Gillen1, Daniel Chavarria1, Vito Castellana1, Cliff Joslyn1,
Alan Chappell1, and Song Zhang2

1Pacific Northwest National Laboratory, 2Mississippi State University

ABSTRACT
We present a visual analytics paradigm and a system prototype for
exploring web-scale graphs. A web-scale graph is described as a
graph with ~one trillion edges and ~50 billion vertices. While there
is an aggressive R&D effort in processing and exploring web-scale
graphs among internet vendors such as Facebook and Google,
visualizing a graph of that scale still remains an underexplored
R&D area. The paper describes a nontraditional peek-and-filter
strategy that facilitates the exploration of a graph database of
unprecedented size for visualization and analytics. We demonstrate
that our system prototype can 1) preprocess a graph with ~25 billion
edges in less than two hours and 2) support database query and
interactive visualization on the processed graph database afterward.
Based on our computational performance results, we argue that we
most likely will achieve the one trillion edge mark (a computational
performance improvement of 40 times) for graph visual analytics
in the near future.

Keywords: Visual analytics, graph visualization, web-scale graph,
NetFlow, triple-store, RDF, SPARQL, high-performance
computing, Linux cluster

1 INTRODUCTION
In today’s big data era, a web-scale graph is often described as a
graph with approximately one trillion edges and approximately 50
billion vertices [4][5]. Exploring a web-scale graph is currently a
hot topic in cloud-computing and cyber-analytics communities led
by major internet vendors such as Google, Facebook, Microsoft,
and Amazon. Although cutting-edge graph exploration
technologies, such as Giraph [2] and Pregel [19], have been
reported in the literature, none use visualization in their analytical
solution. This paper investigates the web-scale graph exploration
problem from a new visual analytics perspective.

Unlike exascale scientific data that could potentially be analyzed
through in situ visualization [6] on the same machine that models
the data, web-scale graphs are often harvested from outside the
visualization machine and thus create a laundry list of big-data
problems in volume, velocity, and variety. Ingesting the data alone
will become a daunting hurdle to overcome because a web-scale
graph will occupy 29.1TB when stored as an edge list, 29.5TB as
an adjacency list, and 271EB (exabyte) as an adjacency matrix [4].

We propose to work around the size problem by creating a new
peek-and-filter visual analytics paradigm, which provides a
glimpse of the underlying data and allows users to decide if they
want to commit to a potentially costly visualization step. We further
develop a visual analytics prototype that applies the peek-and-filter
strategy twice, separately on both high-performance computing
(HPC) and desktop levels to explore benchmark graphs.
Preliminary results indicate that the system prototype can 1)

preprocess (i.e., data ingest and index creation) benchmark graphs
with ~25 billion edges in less than two hours and 2) support
database query and visualization on the processed graph database
afterward. Compatible technologies reported in the literature would
have required days to just ingest graphs of similar sizes [10].

The paper describes the proposed paradigm and the system
prototype that integrates a visualization frontend and a resource
description framework (RDF)-based [23] graph database backend,
evaluates computation performance results using benchmark
datasets, shares user experiences and lessons learned, and discusses
our ongoing effort to scale up from exploring 25 billion to one
trillion edges.

2 RELATED WORK
The graph analytics literature is rich and abundant, but only a few
focus on web-scale graphs. Burkhardt and Waring [4][5] give an
inspiring discussion of web-scale graph problems and challenges
on topics such as exploration and analytics, algorithm, hardware,
and storage in a real-world setting. The term “web-scale” as
described in Burkhardt and Waring [4][5] is sometimes referred to
as “Google-scale” or “Facebook-scale” in the literature.

We organize the rest of the related-work discussion into two
categories: graph visual analytics and web-scale graph processing.
Although the former does not directly address web-scale graphs
and the latter does not involve visualization development, together
they inspired and informed the R&D of the peek-and-filter
paradigm discussed in this paper.

2.1 Big Graph Visual Analytics
We agree that the graph size that seems big today is different from
what seemed big only a few years ago. Here we highlight a few
notable works that address different aspects of big graph visual
analytics from exploration, to layout, to user interaction.

Rohrer et al. [24] give a thorough review of big-graph visual
analytics through practical examples. The paper discusses the
research challenges of big data analytics, describes two working
visual analytics tools in social network and text repository
visualization, and highlights the visual analytics contests at the
annual IEEE VAST Conference.

Instead of machine-automated or user-assisted visualization of
big graphs, Yuan et al. [33] apply a crowdsourcing approach to
develop an intelligent graph layout that merges many subgraphs
submitted by a crowd. The big-graph layout approach, which seeks
both symmetry and aesthetics in graph visualization, can be
extended to analyze other crowdsource-based data.

Hadlak et al. [11] introduce an interesting concept of in situ
visualization, which allows users to interactively switch to different
visualization techniques (and thus the focus of analysis) during the
course of big-graph exploration. Notice that the use of the term “in
situ” here is different from that used in scientific visualization [6].

In big-graph visualization, the problems caused by drawing
graph edges are far more difficult to address than those brought by
drawing graph vertices. Xu et al. [32] conduct a user study on
multiple prevailing techniques of drawing graph edges. The study
highlights the strengths and weaknesses of different edge-drawing

* pak.wong@pnnl.gov

57

IEEE Symposium on Large Data Analysis and Visualization 2015
October 25–30, Chicago, Il, USA
978-1-4673-8517-6/15/$31.00 ©2015 IEEE

techniques for different big graph layout preferences and
requirements.

Big graph visual analytics is seldom supported by one single
visual technique but instead employs a multifaceted array of
techniques that addresses and captures multiple aspects of graph
visual analytics in concert. Hadlak et al. [12] give the most
complete survey study to date on multifaceted graph visualization
categorized in four facets of partitions, attributes, time, and space.
The paper cites more than a hundred examples in four categories of
applications. Another thorough survey on big graph visual analytics
is Von Landesberger et al. [28], which emphasizes individual
visualization techniques instead of multifaceted techniques.

2.2 Web-Scale Graph Processing
In recent years, there has been a push toward supporting web-scale
graph analytics. Such support is the goal of these software
solutions: Pregel [18], Giraph [2][7][8], Mizan [16], GraphLab
[17][18], and GPS [25].

All are graph-based in their data abstraction and expose an API
that encourages programmers to “think like a vertex.” This vertex-
centric approach is built around a programming model where the
user describes actions to be taken at each vertex of the graph given
current inputs. The strategy works by major iterations of vertex
calculations and terminates when all of the vertices have agreed that
the computation is done. This programming model works well for
algorithms such as PageRank.

Some specific specializations on the “think like a vertex” theme
are Mizan and GraphLab. Mizan works to optimize performance
based on load balancing and graph partitioning [15]. GraphLab
focuses more on machine learning than general graph algorithms
[16][17].

3 GRAPH VISUAL ANALYTICS CHALLENGES
We discuss four challenges facing web-scale graph visual analytics.

3.1 Size Matters
Much of today’s big graph visualization R&D focuses on what we
characterize as micro exploration, as illustrated in Figure 1. Part of
the visual analytics process often happens at the individual vertex
and edge levels, such as pinpointing a particular person or
transaction in a social network through, for example, the inspection
of a force-directed graph layout.

When the underlying graph size reaches web-scale, we enter the
largely unexplored territory of macro exploration in graph visual
analytics. Graphs of this size will most likely be stored on and
processed by an HPC machine. Everything from visualization, to
computation, to user interaction designed for micro exploration will
have to change to adapt. One visualization goal for macro
exploration is to break down the web-scale graph to a size at which
micro exploration can be conducted.

3.2 Cognitive Scalability
Most agree that there is no Moore’s Law for cognitive activities.
Human cognitive biases often inhibit understanding of graph
structures. When a graph grows to thousands to tens of thousands
of edges, structures within a visual layout will start to blend in like
background white noise.

When the graph size reaches web-scale, the role of visualization
will most likely be limited to showing the properties and
characteristics of the graph instead of the graph itself.

3.3 Multilevel Visualization Scalability
Multilevel visualization is a proven strategy found in big-graph
visualization literature [14][31]. Given a big dataset G, a multilevel
visual analytics approach generates an increasingly coarsened
hierarchy G0, G1 … Gi … Gn such that the fine levels provide local
details and the coarsened levels give the overall structures of G.
The multilevel approach addresses many big graph visual analytics
problems when the graph size is in the range of tens of thousands
to hundreds of thousands of edges.

When the graph size reaches web-scale, the number of
hierarchical levels quickly escalates. A trillion-edge graph will
have as many as 40 levels within a dyadic hierarchy. Navigating
such a deep hierarchy and searching for answers can itself be a real
challenge.

3.4 Graph Complexity and Database
The fourth challenge is the complexity of the underlying data,
which is precisely defined as an attributed, directed, multi-graph.
The graph vertices have attributes. The graph edges have a direction
and may have multiple attributes. There may be millions of edges
with different directions and/or attribute values between any two
graph vertices.

Using a relational database to manage such a complex graph will
inevitably create many normalized tables that will need to be joined
before a database query can be processed. The requirement of
joining these tables (i.e., expanding the schema) will become
increasingly costly and eventually prohibitive as the graph size
continues to increase.

Our current system prototype uses RDF to address some of the
above performance issues brought on by a relational database. See
Sections 5.1 and 5.2 for further details on RDF.

4 TRADITIONAL AND NEW EXPLORATION APPROACHES
We argue that when exploring web-scale graphs, the role of
visualization will be better off to move away from the traditional
drawing-centric approach that surrounds the visual analytics with
a graph depiction and move to a peek-and-filter approach that first
surmises the cost and consequence of different queue options
before deducing the scope of visual analytics.

Here we will use two graph analytics tools developed at the
Pacific Northwest National Laboratory (PNNL), GreenHornet [31]
and T.Rex [27], to illustrate the strategy differences between the
two approaches. In Section 5, we will show that the impacts of the
paradigm change go beyond the user interaction design and spread
into the design of the analytics and computation infrastructure.

4.1 Drawing Centric
We first use GreenHornet [31] to demonstrate the concept of the
drawing-centric exploration approach. Other prevailing graph
analytics tools such as Gephi [9] and Renoir [22] also have a similar
interaction design. Figure 2 describes one way to use GreenHornet
to visually analyze a graph.

In step 1, a user brings up a drawing layout of the targeted graph
and then adjusts the visualization resolution (drawing details) using
a scroll widget in step 2. In step 3, the user browses the data using
histograms on the right and a spreadsheet at the bottom. In step 4,
the user can drill into the graph by aggregating the vertex/edge
parameters through different selection means. Step 5 redraws the
graph after parameter aggregation. The above steps will repeat until
an answer is found or a theory is developed. The graph drawing
remains the centerpiece of exploration throughout the process.

Figure 1: Data size ranges for micro and macro explorations.

58

4.2 Peek-and-Filter Centric
Figure 3 uses a series of T.Rex screenshot cut-offs to illustrate the
concept of the proposed peek-and-filter approach. (We will
describe the T.Rex system in detail in Section 6.3.) The example in
Figure 3 uses an open source NetFlow dataset provided by the IEEE
VAST Challenge 2013 [15].

In step 1 of Figure 3, we “peek” the data and find the data size
(6,939,698 NetFlow records) too big for graph visualization. Step
2 shows a facets tool, which is a spreadsheet-like scrollable data
table. Inside the first facet highlighted by a red rectangle under the
source IP address (SIP) column, the SIP address 10.15.7.85 (upper
left) has 1017458 (upper right) occurrences in the NetFlow dataset
depicted temporally by the histogram (with green spikes)
underneath the SIP address and counter within the red rectangle.

Assume we select the facet with SIP equal to 10.9.81.5 (i.e., the
second facet under the SIP column), the corresponding facet in step
3 now turns green. All facets in the other columns are updated
instantly. For example, the counter of destination IP (DIP) address
171.10.014 changes from 490657 in step 2 to 21478 in step 3 (as
shown by the red arrow on the right). One of the spikes in the
corresponding histogram (highlighted by a red circle) turns from
green in step 2 to gray (i.e., filtered away) in step 3 after the SIP

selection. The filtered graph size now has 291,323 NetFlow records
as shown in step 4.

To complete the visual analytics cycle, the filtered data will be
visualized within T.Rex, as described later in Sections 6 and 7.

4.3 Distinguish from the Conventional Wisdom
Shneiderman’s visual information-seeking mantra, which states
“overview first, zoom and filter, then details-on-demand,” has
influenced the thinking of the entire information visualization
community for nearly two decades. Our peek-and-filter concept
represents a paradigm shift from conventional belief of using an
overview visualization to guide data analysis to the new belief of
first determining the right big-data mix before conducting visual
analytics. The former is generally considered a top-down approach
of visualizing the whole before the parts. The latter discourages
visualizing the whole dataset at any point during the exploration.

5 DATA MANAGEMENT, DATABASES, AND COMPUTATION
Before introducing the system prototype in detail, we first describe
the graph databases and hardware systems that power the prototype
and explain the rationale behind our system choices. Bear in mind
that the plug-and-play nature of our system design allows future
modification to the infrastructure, such as replacing the graph
database or the visualization for different analysis purposes.

5.1 Resource Description Framework (RDF)
It was determined early in the project that big graphs, as described
in Section 3.4, would best be represented and stored as RDF [23]
triples in the form of subject-predicate-object (s-p-o), e.g.,
Zuckerberg (subject)-is CEO of (predicate)-Facebook (object).

In an RDF-based system, the predicate of a triple is explicitly
defined, which provides greater flexibility and scalability for
database maintenance and query optimization. More importantly,
the triple s-p-o design supports federalized (or decentralized)
queries naturally and avoids costly schema expansion like the
relational database queries.

Today’s prevailing RDF data stores include Facebook’s Open
Graph and Google’s RDFa. To power our system prototype, we
implement a customized version of SPARQL [26]—an RDF query

Figure 2: Drawing-centric visual analytics using GreenHornet.

Figure 3: Peek-and-filter centric visual analytics using T.Rex.

59

language—in GEMS [10][20][29] (Section 5.2) running on a
customized HPC machine (Section 5.3).

5.2 GEMS
GEMS [10][20][29] is developed at PNNL for exploring big graphs
on HPC machines. The command-line-based system implements a
subset of SPARQL query language with customized GEMS
extensions to optimize big graph analytics. GEMS is scoped to be
a fast data analysis tool for big graphs instead of a general graph-
mining tool. It is specifically designed to explore and exploit big-
graph properties with significantly enhanced computation
performance.

Table 1 highlights a selected set of foundational SPARQL
commands that extract information such as graph properties and
feature distributions [1]. We avoid SPARQL queries that are
semantic-based, such as relying on type-inference (e.g., rdf:type
and rdfs:subClassOf) [26], which allows us to adapt our techniques
to non-RDF graphs. Using the retrieval results from Table 1, GEMS
can further report additional results such as density (i.e., # of
vertices divided by # of edges) of both ontology and instance
vertices and edges.

Table 1: SPARQL queries with customized GEMS extensions.

 SPARQL Return/Support

Pr
op

er
tie

s

SELECT (COUNT (DISTINCT ?s) AS
?no) WHERE
{{?s ?p ?o} UNION {?o ?p ?s}}

of vertices

SELECT (COUNT (?p) AS ?no) WHERE
{?s ?p ?o}

of edges

SELECT (COUNT (DISTINCT ?s) AS
?count) WHERE {?s a ?class}

of vertices
with ≥ 1 type

Co
un

ts

SELECT (COUNT (DISTINCT ?s) AS
?no) WHERE {?s ?p ?o}

of subject
vertices

SELECT (COUNT (DISTINCT ?o) AS
?no) WHERE {?s ?p ?o};

of object
vertices

SELECT (COUNT (DISTINCT ?p) AS
?no) WHERE {?s ?p ?o}

of predicates

Di
st

rib
ut

io
ns

SELECT ?p (COUNT (?s) AS ?count1)
WHERE {?s ?p ?o} GROUP BY ?p
ORDER BY DESC (?count1)

Predicate
distribution

SELECT ?s (COUNT (?p) AS ?count1)
{?s ?p ?o} GROUP BY ?s ORDER BY
DESC (?count1)

Subject
distribution

SELECT ?o (COUNT (?p) AS ?count1)
{?s ?p ?o} GROUP BY ?o ORDER by
DESC (?count1);

Object
distribution

5.3 High-Performance Computing System
Our system prototype is powered by an HPC system known as
PUMA. Located at PNNL, PUMA is a Linux cluster comprising 32
nodes of Intel Xeon E5-2680 processors running at 2.8 GHz, eight
Intel Xeon Phi 5110P coprocessors, and eight NVidia K40 GPUs.
Each of the 32 nodes contains 20 physical cores, with a total of 640
cores. The system operates on both FDR InfiniBand and traditional
Gigabit Ethernet networks.

PUMA is particularly equipped with abundant memory to meet
the unique compute demand of in-memory applications such as big-
graph analytics. It is known that “Graph problems that fit in
memory can leverage excellent advances in architecture and
libraries” [4]; PUMA has 24.5 TB of memory installed, divided
evenly across the 32 nodes (i.e., 768 GB per node).

New hardware is currently being acquired to improve the
performance of the PUMA infrastructure. We estimate that we will
need ~24TB of memory to fit a trillion-edge graph (assuming 24
byte per graph edge or s-p-o triple) plus another ~50TB for

indexing and intermediate computation space to operate. When the
system is fully established, it is promised that exploring big graphs
using GEMS on PUMA will scale to O(1T) graph edges [10][20].

6 SYSTEM PROTOTYPE
This section gives a design overview of the proposed peek-and-
filter paradigm and describes its implementation in detail.

6.1 System Design Overview
Figure 4 depicts an overview of the peek-and-filter implementation
in the system prototype. On the left (red rectangle) is the graph
database backend that runs GEMS on PUMA. On the right (orange
rectangle) is a visual analytics frontend that runs T.Rex on a
desktop computer. After a graph with tens of billions of edges (left)
is ingested into a graph database, a user can peek-and-filter graph
subsets using SPARQL commands in GEMS and send up to
millions of graph edges (top) downstream to T.Rex (right) for
visualization. Within the T.Rex frontend (i.e., inside the orange
rectangle), there is another “peek and filter, then visualization” loop
for users to fine-tune their explorations repeatedly until a final
answer such as a vertex or a subgraph is identified (on the far right).

A major difference between the two peek-and-filter
implementations in Figure 4 is that the one within T.Rex (orange
rectangle) provides more powerful interactive visualization and
analytical capabilities that can only be scaled up to hundreds and
thousands of edges on a panel display. In other words, we use
GEMS to address challenges 1 (size) and 4 (complexity) and T.Rex
to address challenges 2 (cognition) and 3 (interaction) as described
earlier in Section 3.

6.2 Graph Database Backend
GEMS [10][20][29] is a customized graph database system that has
continued to evolve as algorithms are developed and hardware is
introduced. As of this writing, GEMS is able to preprocess graphs
with 25 billion edges in less than two hours using only 16 of the 32
nodes on PUMA. The preprocessing step 1) ingests the graph in n-
triples format as an ASCII file and 2) creates both s-p-o and o-p-s
indices that facilitate SPARQL queries afterward.

GEMS has a web-based interface that allows users to enter
SPARQL commands and a second command-line interface that
supports mainly software development and testing on PUMA.

6.3 Visual Analytics Frontend
T.Rex [27] is a visual analytics system for exploring transactional
data that can be formulated conceptually as a graph, such as
NetFlow data. Using a suite of visualization views along with a
high-performance database server, T.Rex seamlessly supports the
peek-and-filter visual analytics paradigm described in Section 4.2.

Figure 4: System design overview.

60

Figure 5 shows a screenshot of T.Rex in action. Individual
visualization views (A through K in the figure) can be repositioned,
resized, or undocked from the main window. The Summary view
(A) provides high-level contextual information, such as data size,
current selection size, and, optionally, statistics (i.e., data peeking).
This view also contains buttons to filter the dataset or reverse the
selection (i.e., data filtering). Reversing the selection is a powerful
tool to quickly select all the unselected records during exploration.

T.Rex’s Facets view (B) is only applied to categorical data, such
as an IP address. This view is designed to show frequently
reoccurring values from dataset columns and what other values co-
occur in the other columns of the dataset. The histograms embedded
within the facets provide temporal awareness of these co-
occurrences, as depicted in Figure 3.

The Graph view (C) uses a highly customized multiscale graph
layout algorithm similar to the one implemented in GreenHornet
[31] for big graph visualization. A user can select any two data
columns to use as vertices and indicate if the drawing is a bi-partite
graph. This view shows connectivity patterns, such as one-to-one,
one-to-many, high connectedness, or islands of communication.

The Scatterplot view (D) plots a numeric field against either
another numeric field or a date/time field. The Matrix view (E)
shows highly correlated pairs of values contained in two data
columns of the user’s choosing.

The Group view (F) allows the grouping of a set of selected
records and the inclusion of a group color that identifies the
corresponding group members in the Graph and Scatterplot views.
The group colors provide an effective way to specify different
models for reasoning or organization and to perform analysis at a
group level rather than at a record level.

The Timeline view (G) is a histogram visualization for temporal
analysis and data selection. A corresponding Time Player view (H)

animates the selected data in the Graph and Scatterplot views
according to the user-defined step increment.

The Data Grid view (I) is a spreadsheet-like table browser.
Records with a large number of columns can be inspected
individually using the Record Viewer (J).

The Filters and Dataset Column views (K) allow selections of
both table rows and columns using one or more filters. When a
dataset is filtered, the views of the T.Rex application hide any
records that have been removed by the filter. Filters can be created
to focus on data subsets, excluding records that are not part of the
active analytic context.

T.Rex was developed using a client/server architecture to
maximize the user interaction and visual analytics capabilities and
to use the processing power of a backend server, such as GEMS.
T.Rex is a desktop-installed Java application developed using the
Eclipse RCP framework. Each visualization is a plugin, giving
added flexibility for custom deployments that require only a subset
of the full functionality of the tool. Interested readers are
encouraged to watch our T.Rex video [27] for additional examples.

7 PEEK-AND-FILTER DEMONSTRATIONS
We present a case study that demonstrates a series of peek-and-
filter visual analytics tasks using a modest-sized NetFlow graph
with ~6.9M records or ~627M triples provided by the IEEE VAST
2013 Challenge [15]. Numerous answers of the challenge have
been posted online and published in the literature since the 2013
contest. We use the NetFlow dataset in our discussion here not to
solve the challenge but to demonstrate how one can use the peek-
and-filter approach in a semi-realistic cyber-analytics setting.

Figure 6 describes a series of “peek-and-filter then visualization”
tasks to analyze the graph. Tasks highlighted in orange rectangles

Figure 5: A screenshot of T.Rex analyzing a dataset with 6,939,698 NetFlow records or 627,572,995 triples.

61

are carried out by GEMS on PUMA and
the ones in green are executed by T.Rex on
a desktop computer.

The first step involves GEMS ingesting
an RDF version of the VAST dataset. It
takes GEMS 134 seconds to create the
graph database from the dataset using 16
PUMA nodes. Using 8 PUMA nodes,
GEMS ingests the dataset in 207 seconds.
And with only 4 PUMA nodes, GEMS
requires 364 seconds to ingest the dataset.
Eight tasks (T1-T8) are illustrated in
Figure 6 and explained below.

T1. After the graph database is created,
the first knowledge learned about
the graph is probably its size. The
SPARQL command below reports
that there are 624,572,955 edges in
the graph database. Obviously,
there are too many edges for an
effective graph drawing
visualization.

SELECT (COUNT (?p) AS ?no) {?s
?p ?o}

T2. For a NetFlow dataset with
potentially up to millions of edges
between a pair of IP addresses, perhaps a more interesting
question to ask is how many distinct IP addresses are in the
graph. The following SPARQL command reports that there
are only 1440 unique IP addresses, implying that the graph
has 1440 vertices.

SELECT (COUNT (DISTINCT ?s) AS ?no) {{?s ?p ?o}
UNION {?o ?p ?s}}

T3. The lower number of IP addresses in T2 suggests that we
may be able to explore the graph using some basic
visualization. The first visualization that comes to mind is a
temporal distribution of the number of IP addresses per day,
which could be computed using the following SPARQL
command.

SELECT ?c (count(?c) as ?cnt) WHERE {{?a
<tag:pnnl.gov,2015:NF#srcIP> ?c} UNION {?a
<tag:pnnl.gov,2015:NF$dstIP> ?c}} GROUP BY ?c

T4. The results of T3—15 integers for 15 days—are sent to
T.Rex’s Timeline view for temporal visualization. The
distribution quickly exposes two distinct structures in two
consecutive weeks—a skewed pattern (green in T4) in the
first week and a twin-peak pattern (red in T4) in the second
week. The latter resembles a potential brute force “scan first
and then attack” effort.

T5. To better understand the potential anomalies between the
two peak days in the second week, all the actors (or IP
addresses) involved are extracted from the graph database
using the following SPARQL command for further
investigation on T.Rex. The selected days are highlighted
in green in the histogram of the Timeline view.

SELECT * WHERE {{?a <tag:pnnl.gov,2015:NF#stDate>
"2013-04-11"} UNION {?a
<tag:pnnl.gov,2015:NF#stDate> "2013-04-14"}}

T6. T.Rex’s Facets view is used in this task to answer questions
such as who are the major actors (either source or

destination IPs) involved in the two-day period. Of the five
most frequently visited destination IPs, the visualization
show that the first IP (172.30.0.4) was connected twice as
frequently as the second one (172.10.0.4) and about 90
times more than the fifth one (239.255.255.250), as
highlighted by the red arrows in Figure 6.

T7. The numbers identified in T6 trigger a closer inspection of
the original NetFlow records using T.Rex’s Data Grid view,
which is a spreadsheet with enhanced notational features.
After scrolling down a few pages, we observe that records
with the few IPs identified in the T6 vary little and a
scrolling list is not the right tool to explore the hidden
structures.

T8. Based on the findings in T7 and observations made earlier
such as the graph size, we determine that it is now
appropriate to use T.Rex’s Graph view to interactively
explore the layout of the extracted graph.

8 COMPUTATION PERFORMANCE
We use the Berlin SPARQL Benchmark (BSBM) dataset generator
and accompanying SPARQL queries [3] to demonstrate the
computation performance of GEMS that powers the backend of our
system prototype. BSBM provides elaborate datasets and advanced
SPARQL queries that go beyond simple database retrieval and data
lookup but instead ask questions such as “list the top 10 products
most similar to a specific product, rated by the count of features
they have in common.”

Because the primary design goal of GEMS is to extract a
reasonable amount of graph data for interactive visual analytics on
T.Rex, we focus our computation performance study on graph
property queries that facilitate the data extraction. Table 2 shows
the computation results of a 25B-edge BSBM benchmark graph. It
takes less than two hours for GEMS to ingest the data and set up
the graph database for queries using only16 nodes on PUMA. We
note that graph data at this scale cannot fit in to a single system’s
memory, so either paging or communication is required, which
imposes a significant burden on overall computation time.

Figure 6: A graphical illustration of a peek-and-filter demonstration.

62

Table 2: Query times for different SPARQL queues running on
PUMA using 16 nodes.

Query Time (s)
of vertices* 2109
of edges* 341
of subject vertices* 1034
of object vertices* 974
of predicates* 798
Predicate distribution* 1180
Highest out-degree: SELECT ?s (COUNT (?p)
as ?c) {?s ?p ?o} GROUP BY ?s ORDER BY DESC
(?c) LIMIT 100

1496

*The corresponding SPARQL commands are described in Table 1.

The time results in Table 2 are generated using only 50% (16 of
the 32 nodes) of available CPUs on PUMA. Additionally, the
current implementation of GEMS doesn’t use the eight NVidia K40
GPUs that, with Tesla accelerators, can be up to 10 times faster than
with CPUs (Intel Xeon E5-2680) alone when processing data. With
the combination of our progress on supporting larger datasets and
current hardware trends, we expect to support one trillion edges in
the very near future.

9 DISCUSSION
We discuss major contributions of the paper, lessons learned, and
ongoing work that addresses the challenges ahead.

9.1 Major Contributions
The paper presents a non-traditional peek-and-filter paradigm for
big graph visual analytics and a working system prototype that
facilitates the exploration of a graph database of unprecedented size
for visualization and analytics. Here we summarize our
contributions from three different perspectives:

Big Data Visual Analytics – Conventional wisdom in
visualization such as Shneiderman’s visual information-seeking
mantra will fall short when applied to big graph visual analytics
problems. In our case, merely accessing an entire web-scale graph
within a reasonable timeframe will be a stretch; getting a productive
overview of the graph in visual form will be unthinkable because
of the cognitive- and system-related challenges described in [30].
The peek-and-filter approach provides a viable solution to address
some of these challenges found in big data visual analytics.

Big Data Computation Support – Our high-performance graph
database system, GEMS, takes 1) less than two hours to ingest a
graph database from a RDF graph with ~25 billion edges and 2)
about 10-30 minutes to query against the graph database afterward.
Compatible technologies reported in the literature would have
required days to just ingest graphs of similar sizes [10].

Practicality and Applicability – Our desktop-based frontend,
T.Rex, allows users to access big graph databases through GEMS
and visually explore millions of transactional records (NetFlow in
our case) extracted from the database. Because much of the heavy-
lifting computational work is done on the HPC backend, we can run
T.Rex on a modest computer such as a first-generation Microsoft
Surface Pro tablet, as depicted in Figure 7.

9.2 Lessons Learned
Our lessons learned discussion focuses on three main areas: graph
database, I/O bound, and visualization scalability.

Graph database – We use RDF to address many big-graph query
issues brought by the costly schema expansion of a relational
database. As the underlying graph size approaches web-scale
ranges, we encounter thresholds beyond which it is necessary to
distribute the graph across multiple disjoint memory systems as the
only viable option for an in-memory database. Running graph

search and retrieval computations on a distributed cluster adds
performance pressure on the interconnection network and can slow
the computation by several orders of magnitude.

I/O bound – Once in the realm of needing a distributed cluster
platform, there are two major challenges to achieve good
performance: latency of referencing data stored in a remote node
and interconnection network throughput. The GEMS system
overcomes the latency by employing a massive multithreading
approach. Once a request to reference data in a remote node’s
memory is made, the task is moved aside and another task is
brought into the core to work on. As long as there are enough tasks
so that there is always something useful for a core to be doing, the
latency is “tolerated.” GEMS also uses well-known small message
aggregation techniques to efficiently use the interconnection
network in spite of the tendency for graph computation to involve
small memory requests from remote nodes that result in a large
number of small messages being sent out on the network.

Visualization scalability – To our surprise, the biggest and most
immediate challenge facing T.Rex users and developers is not the
very limited (and fixed) number of display pixels but the database
response time that powers the query graphics from the backend. We
believe that we can continue to increase the data volume and
analysis capacity of T.Rex by first addressing the previous two
lessons learned (i.e., graph database and I/O bound) and only then
considering a new generation of visualization technology that will
optimize the overall user experience.

9.3 Ongoing Work
To embrace a wider range of graph database applications, we are
looking at using a property graph model [21] (attributed, directed,
multi-graph) as the backend to our workflow. Such a change will
bring new challenges to the T.Rex part of our strategy because the
user will want the ability to see all of an edge’s attributes and
associated values. Displaying all these attributes and values will
result in increasing the memory footprint of a subgraph sent from
the backend to the T.Rex frontend.

The more general property graph data model will affect the graph
search and retrieval steps by increasing the demand on the
interconnection network. To offset the size of an edge that must
transit the interconnection network, we are exploring how much of
a reduction we will get in the number of vertices and edges by
moving from an RDF graph to a property graph representation.

10 CONCLUSION
The paper presents a web-scale graph visual analytics paradigm and
a proof-of concept system prototype that, based on the computation
and analytical results reported in this paper, will potentially be
scaled to a trillion edges in the near future. We believe that the
peek-and-filter approach is a viable option to address some of the
web-scale graph exploration and analytics challenges. We will

Figure 7: Running our big graph visual analytics
prototype on a Microsoft Surface Pro Tablet.

63

continue to report the R&D progress and results of our web-scale
graph visual analytics work at this venue in the future.

ACKNOWLEDGMENTS
This work has been supported in part by the U.S. Department of
Defense (DoD) and other Federal agencies. The Pacific Northwest
National Laboratory is managed for the U.S. Department of Energy
by Battelle Memorial Institute under Contract DE-AC05-
76RL01830.

REFERENCES
[1] Sinan al-Saffar, Cliff Joslyn, and Alan Chappell, “Graph-o-scope

Concept,” Technical Report PNNL-20137, Pacific Northwest
National Laboratory, 2011.

[2] Apache Giraph, http://giraph.apache.org/.
[3] Berlin SPARQL Benchmark (BSBM), http://wifo5-

03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/.
[4] Paul Burkhardt and Chris Waring, “An NSA Big Graph

Experiment,” Technical Report NSA-RD-2013-056002v1, U.S.
National Security Agency, May 20, 2013. See also
http://www.pdl.cmu.edu/SDI/2013/slides/big_graph_nsa_rd_201
3_56002v1.pdf.

[5] Paul Burkhardt, “Big Graph,” The Next Wave, 20(4), 2014. See
also https://www.nsa.gov/research/tnw/tnw204/article3.shtml.

[6] Hank Childs, Kwan-Liu Ma, Hongfeng Yu, Brad Whitlock,
Jeremy Meredith, Jean Favre, Scott Klasky, Norbert Podhorszki,
Karsten Schwan, Matthew Wolf, Manish Parashar, and Fan
Zhang, “In Situ Processing,” High Performance Visualization-
Enabling Extreme-Scale Scientific Insight, pages 171-198, Oct.
2012.

[7] Avery Ching, “Graph Analysis with One Trillion Edges on
Apache Giraph,” Strata 2014, Santa Clara, CA, Feb 2014.

[8] Avery Ching, “Scaling Apache Giraph to a trillion edges,”
Facebook, 2015. See also
https://www.facebook.com/notes/facebook-engineering/scaling-
apache-giraph-to`-a-trillion-edges/10151617006153920.

[9] Gephi, https://gephi.github.io/.
[10] Vito Giovanni Castellana, Alessandro Morari, Jesse Weaver,

Antonino Tumeo, David Haglin, Oreste Ville, and John Feo, “In-
Memory Graph Databases for Web-Scale Data,” IEEE Computer,
48(3):24-35, IEEE CS Press, March 2015.

[11] Steffen Hadlak, Hans-Jörg Schulz, and Heidrun Schumann, “In
Situ Exploration of Large Dynamic Networks,” IEEE
Transactions on Visualization and Computer Graphics, 17(12):
2334-2343, IEEE CS Press, December 2011.

[12] Steffen Hadlak, Heidrun Schumann, and Hans-Jörg Schulz, “A
Survey of Multi-faceted Graph Visualization,” in Ronald Lngner,
Timo Luks, Anette Schlimm, Gregor Straubem and Dirk
Thomaschke, editors, Eurographics Conference on Visualization
(EuroVis) 2015 State of the Art Reports, The Eurographics
Association, 2015.

[13] Minyang Han, Khuzaima Daudjee, Khaled Ammar, M. Tamer
Ozsu, Xingfang Wang, and Tianqi Jin, “An Experimental
Comparison of Pregel-like Graph Processing System,”
Proceedings of the VLDB Endowment, 7(12):1047-1058, 2014.

[14] David Harel and Yehuda Koren, “A Fast Multi-Scale Method for
Drawing Large Graphs,” Proceedings of the 8th International
Symposium on Graph Drawing GD 2000, pages 183-196,
Springer-Verlag, 2000.

[15] IEEE VAST Challenge 2013,
http://vacommunity.org/VAST+Challenge+2013.

[16] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom,
Dan Williams, and Panos Kalnis, “Mizan: A System for Dynamic
Load Balancing in Large-scale Graph Processing,” Eurosys ’13,
Prag, Czech Republic, April, 2013.

[17] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson,
Carlos Guestrin, and Joseph M. Hellerstein, “GraphLab: A New
Framework for Parallel Machine Learning,” CoRR
abs/1006.4990, 2010.

[18] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson,
Carlos Guestrin, and Joseph M. Hellerstein, “GraphLab: A New
Framework for Parallel Machine Learning,” CoRR
abs/1408.2041, 2014.

[19] Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski,
“Pregel: A System for Large-Scale Graph Processing,”
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data SIGMOD 2010, pages 135-
146, ACM, 2010.

[20] Alessandro Morari, Vito Giovanni Castellana, Oreste Villa,
Antonino Tumeo, Jesse Weaver, David Haglin, John Feo, and
Sutanay Choudhury, “Scaling Semantic Graph Databases in Size
and Performance,” IEEE Micro, 34(4):16-26, IEEE CS Press, July
2014.

[21] Property Graph Model, http://neo4j.com/developer/graph-
database/#property-graph.

[22] Renoir,
http://nsabackups.com/research/tech_transfer/fact_sheets/renoir.s
html.

[23] Resource Description Framework (RDF),
http://www.w3.org/RDF/.

[24] Randall Rohrer, Celeste Lyn Paul, and Bohdan Nebesh, “Visual
Analytics for Big Data,” The Next Wave, 20(4), 2014. See also
https://www.nsa.gov/research/tnw/tnw204/article4.shtml.

[25] Semih Salihoglu and Jennifer Widom, “GPS: A Graph Processing
System,” Proceedings of the 25th International Conference on
Scientific Statistical Database Management, ACM Press, July
2013.

[26] SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-
sparql-query/.

[27] T.Rex, https://www.youtube.com/watch?v=GSPkAGREO2E.
[28] Tatiana Von Landesberger, Arjan Kuijper, Tobias Schreck, Jörn

Kohlhammer, Jarke Van Wijk, Jean-Daniel Fekete, and Dieter
Fellner, “Visual Analysis of Large Graphs: State-of-the-Art and
Future Research Challenges,” Computer Graphics Forum,
30(6):1719-1749, Wiley-Blackwell Publishing, 2011.

[29] Jesse Weaver, Vito Giovanni Castellana, Alessandro Morari,
Antonino Tumeo, Sumit Purohit, Alan Chappell, David Haglin,
Oreste Villa, Sutanay Choudhury, Karen Schuchardt, and John
Feo, “Toward a data scalable solution for facilitating discovery of
science resources,” Parallel Computing, 40(10):682-696,
Elsevier, 2014.

[30] Pak Chung Wong, Han-Wei Shen, Chaomei Chen, Chris Johnson,
and Robert Ross, “Top Ten Challenges in Extreme-Scale Visual
Analytics,” IEEE Computer Graphics and Applications, 32(4):63-
67, IEEE CS Press, July 2012.

[31] Pak Chung Wong, Patrick Mackey, Kristin A. Cook, Randall M.
Rohrer, Harlan Foote, and Mark Whiting, “A Multi-Level
Middle-Out Cross-Zooming Approach for Large Graph
Analytics,” Proceedings IEEE Symposium on Visual Analytics
Science and Technology (VAST) 2009, pages 147-154, IEEE CS
Press, October 2009.

[32] Kai Xu, Chris Rooney, Peter Passmore, Dong-Han Ham, and
Phong H. Nguyen, “A User Study on Curved Edges in Graph
Visualization,” IEEE Transactions on Visualization and
Computer Graphics, 18(12):2449-2456, IEEE CS Press,
December 2012.

[33] Xiaoru Yuan, Limei Che, Yifan Hu, and Xin Zhang, “Intelligent
Graph Layout Using Many Users’ Input,” IEEE Transactions on
Visualization and Computer Graphics, 18(12):2699-2708, IEEE
CS Press, December 2012.

64

