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Abstract To make a decision, we need to compare the

values of quantities. In many practical situations, we know the

values with interval uncertainty. In such situations, we need to

compare intervals. Allen’s algebra describes all possible

relations between intervals on the real line which are gener-

ated by the ordering of endpoints; ordering relations between

such intervals have also been well studied. In this paper, we

extend this description to intervals in an arbitrary partially

ordered set (poset). In particular, we explicitly describe

ordering relations between intervals that generalize relation

between points. As auxiliary results, we provide a logical

interpretation of the relation between intervals, and extend the

results about interval graphs to intervals over posets.

Keywords Intervals in posets � Allen’s algebra � Interval

orders � Weak order � Strong order � Interval graph

1 Introduction

Need to compare values. In order to compare different

objects, we need to compare the values of their corre-

sponding quantities. For example, one object is heavier than

the other if its weight is larger than the weight of the other

object, it is faster than the other if its velocity is larger, etc.

The result of comparing two values is often called a

relation between the two values v and v0:

• if v \ v0, we say that v and v0 are in relation \;

• if v = v0, we say that v and v0 are in relation =; etc.

Important terminological comment. It should be men-

tioned that this usual use of the word ‘‘relation’’ can lead to

confusion, since in mathematics, a relation is defined as a

set of pairs: e.g., the relation \ between real numbers is

defined as the set of all the pairs (a, b) for which a \ b. To

avoid confusion, in this paper, we will call the relation

symbol between the two values an individual relation, or

i-relation, for short.

Need to take into account interval uncertainty. In the

ideal situation, when we represent the value in question as

a real number x 2 R; and we know the exact values of the

quantities for both objects x; y 2 R; we can compare these

values and conclude either that the first value is smaller

x \ y, or that the first value is larger x [ y, or that these

values are equal x = y. In practice, we rarely know the

exact values of the corresponding quantity: the values

usually come from measurements, and measurement are

never absolutely accurate—the measurement result ex is, in

general, different from the actual (unknown) value x of this

quantity. In many practical situations, we only know the

upper bound D on the absolute value jDxj of the mea-

surement error Dx ¼def
~x� x: In this case, once we know ex
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and D; the only information that we have about the value x

is that x belongs to the real interval x; x½ � � R; where x ¼
ex � D and x ¼ ex þ D:

i-Relations between values under interval uncertainty. If

we know the two values with interval uncertainty, we may

not be able to tell whether the first value is smaller or larger

than the second value. For example, if the first value x is in

the interval [0.9, 1.1] and the second value y is in the

interval [1.0, 1.2] then it may be that x = 0.9 \ y = 1.2, or

it may be that x = 1.1 [ y = 1.0.

Interval i-relations: what is known. Methods using

intervals on the real line are prominent in quantitative

analysis; see, e.g., Moore et al. (2009). Let x ¼ ½x; x� � R

be a generic real interval and let R̂ be the set of all real

intervals. The possible i-relations between real intervals

x; y 2 R̂ generated by i-relations between endpoints were

explicated in the early 1980s in Allen (1983) (see also

Nebel and Bürckert (1995)); the class of such i-relations is

known as Allen’s algebra.

Specifically, if we are given two numbers x and

y, then we have three possible i-relations between them:

\, =, and [. In the interval case, instead of each number

x (or y), we have two numbers: x and x (or y and y). So, to

fully describe the i-relation between the intervals, we need

to describe all possible combinations of i-relations between

these numbers. For non-degenerate intervals, we know the

i-relation between x-bounds and the i-relation between

the y-bounds: x \ x and y\ y: So, to describe possible

i-relations between (non-degenerate) intervals, it is suffi-

cient to describe the i-relations between the x-bounds and

the y-bounds, i.e., the 4-tuple (r--, r-?, r?-, r??), where:

• r-- is the i-relation between x and y;

• r-? is the i-relation between x and y;

• r?- is the i-relation between x and y;

• r?? is the i-relation between x and y:

Each i-relation between numbers can have three possible

values\, =, and[, so in principle, we can have 34 possible

4-tuples of i-relations. In our case, however, due to the

properties of order, not all such 4-tuples are possible: e.g.,

if x\y; then, due to transitivity, we also have x\y; x\y;

and x\y: What Allen did was described all possible

4-tuples of i-relations between the endpoints x; x; y; y of

two non-degenerate intervals ½x; x� and ½y; y�:
Possible orders between intervals: what is known.

Allen’s algebra defines many different relations between

intervals. An important class of relations are orders. It is

therefore natural to ask: which relations of Allen’s algebra

define orders?

At first glance, this question may seem easy to answer:

we already have a full description of all possible i-relations

between intervals, so we can simply check which of these

i-relations define an order. However, the situation is not as

simple: e.g., for real numbers, neither of the three i-rela-

tions \, =, and [ define an order. To get an order, we

need to consider a propositional combination of these

relations: e.g., the usual order x B y means that (x \ y)_
(x = y), and the order x C y means that (x [ y)_ (x = y).

Similarly, to describe orders between intervals, Allen

considers propositional combinations. Specifically, since

we know that the orders between numbers are B and

C, Allen considers propositional combinations of the cor-

responding relations B and C. We want to describe orders

that, in the degenerate case when ½x; x� ¼ ½x; x� and ½y; y� ¼
½y; y�; reduce to the usual numerical order x B y. Thus, it is

reasonable to consider propositional combinations of the

truth value of the following four relations: x� y; x� y;

x� y; and x� y: It turns out that only two such combina-

tions lead to orders that extend x B y:

• In the strong order, relation x B y means that x� y; so

that every value from the interval x; x½ � is smaller than

or equal to every value from the interval y; y
h i

: This is

the common and by far most prominent sense of

‘‘interval order’’, as advocated e.g., in Fishburn (1985).

• In the weak order, relation x B y means that x� y and

x� y; so that the respective endpoints satisfy B on the

reals. This is a very natural sense of an interval order,

for example saying that one event extended in time can

be prior to another even if it is still underway when the

subsequent event initiates.

If we do not require that the combination reduces to

x B y in the degenerate case, then we can additional orders,

e.g., the containment order x � y [see, e.g., Tanenbaum

(1996)], in which x B y means that x� y and x� y:

Relation between different interval orders. It is worth

mentioning that the strong order implies the weak order.

Also, the weak order and the containment order are

generally conjugate, in that pairs of real intervals x; y 2 R̂

are comparable in exactly one or the other.1 In fact, the

weak order is actually just the Cartesian product B 9

B of the natural order B on R; whereas the containment

order is defined as C 9 B (Papadakis and Kaburlasos

(2010)).

Need to consider partially ordered sets. The set of all

the real numbers is totally (linearly) ordered: for every two

numbers x and y, either x \ y or y \ x, or x = y. In many

practical situations, however, we are interested in the

quantities which are only partially ordered.

1 Note that this is almost always true, in that endpoint equality also

has to be taken into account, yielding intervals which are equal at one
endpoint comparable in both orders.
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For example, in space-time geometry, we do not have

the exact location of an event in space-time, we usually

only know the events x that can causally affect the given

event x (x� x) and the events x that can causally be

affected by x (x� x). In this case, the only information that

we have about the event x is that it belongs to the interval

x; x½ � ¼ fx : x� x� xg: This description looks similar to

the above interval case, but the important difference is that

the causality relation is space–time is only a partial order:

there exist events x and y for which x£ y and y£ x; such

events are called incompatible and denoted by xk y; see,

e.g., Feynman (2005), Kronheimer and Penrose (1967),

Misner et al. (1973), Zapata and Kreinovich (2012) and

references therein.

There are other cases when we have intervals in partially

ordered spaces: e.g., preferences often form only a partial

order; see, e.g., Kosheleva et al. (1998); Tanenbaum et al.

(2004); Xu et al. (2012). So, if we know the lower and

upper bounds, we end up with an interval in a partially

ordered space.

In order theory, i.e., in the mathematics of lattices and

partially ordered sets (see, e.g., Davey and Priestly 1990),

intervals are readily available. Recall that for two elements

x and y in a partially ordered set, we have the following

possible relations: x \ y, x = y, x [ y, and x k y (meaning

that x and y are incompatible, i.e., that x = y, x¥ y

and x k y). For two elements x, y where x B y, then

we simply define the interval x = [x,y] as the set x =

{z: x B z B y}.

Need to extend interval orders to partially ordered sets.

Since in practice, we encounter intervals in partially

ordered spaces, it is desirable to describe possible relations

between such intervals—i.e., to extend interval orders and

Allen’s algebra to partially ordered sets. In particular, we

would like to list all possible ordering relations between

two intervals in a partially ordered set.

Remaining open problem. In this paper, we consider the

case when we know a preceding event x and a following

event x: In this case, the only information that we have

about the event of interest x is that it belongs to the interval

½x; x�: In principle, we may have several lower bounds and

several upper bounds. In this more general case, the set of

possible values of x is an intersection of several intervals.

In other cases, we may have an even more general set. It is

desirable to further generalize the results of this paper by

extending these results from intervals to intersections of

intervals—and to more general sets.2

2 Possible i-relations between intervals

Comparison between points x and y: reminder.

Definition 1 Let X be a partially ordered set. By an

i-relation between elements x, x0 [ X, we mean:

• a symbol \ if x \ x0;
• a symbol = if x = x0;
• a symbol [ if x [ x0;
• a symbol k if xk x0.

i-Relations between points can be illustrated on the

example of a 2-D analog of the causality relation of special

relativity. In special relativity, it is assumed that all the

speeds are limited by the speed of light c. Thus, an event

(x0, x1) occurring at moment x0 at a spatial point x1 can

influence an event (y0, y1) if and only if y0 [ x0 and during

the time y0 - x0, the signal traveling with speed of light c

can cover the distance |x1 - y1| between the corresponding

spatial points, i.e., if

x ¼ ðx0; x1Þ� y ¼ ðy0; y1Þ , c � ðy0 � x0Þ� jx1 � y1j:

This relation is illustrated by Fig. 1, in which:

• the symbol [ marks all the points y for which x [ y,

• the symbol \ marks all the points y for which x \ y,

• etc.

Comparison between a point x and an interval y; y
h i

:

We have already described possible i-relations between

points. Each point x can be viewed as a ‘‘degenerate’’

interval x; x½ �: Thus, we have covered the case when both

intervals are degenerate.

Before we consider the general case of comparing

intervals, let us first consider the case when the first

interval is still degenerate (i.e., is a point), but the second

interval y; y
h i

is non-degenerate (i.e., y\y). In this case,

2 The authors are thankful to an anonymous referee for this

interesting suggestion. Fig. 1 Partial order corresponding to special relativity
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instead of a single i-relation r ([, \, =, or k) between x

and y, we have two i-relations:

• the i-relation r- between x and y (for which xr�y), and

• the i-relation r? between x and y (for which xrþy).

Our objective is to describe possible pairs p = (r-, r?)

of such i-relations. To come up with such a description, let

us introduce the following order � between four possible

relations:

[ 	 ¼; [ 	 k; [ 	 \; ¼ 	 \; k 	 \

This order is illustrated in Fig. 2. The order 	 means that[
precedes all other i-relations, and = and k precede \.

Alternatively, we can say that\ follows all other relations,

and = and k follow [.

Proposition 1 Let X be a partially ordered set, and let

x; y; and y; be elements of X for which y� y: Then r� � rþ;

where:

• r- is the i-relation between x and y; and

• r? is the i-relation between x and y:

Remark 1 For reader’s convenience, all the proofs are

placed in the special (last) Proofs section.

Proposition 2 For a pair p = (r-, r?) of i-relations, the

following two conditions are equivalent to each other:

• there exists a partially ordered set and values x\x and

y from this set for which:

• the i-relation r- is the i-relation between x and y; and
• the i-relation r? is the i-relation between x and y:

• the pair p = (r-, r?) is equal to one of the following

pairs:

ð\;\Þ; ð¼;\Þ; ðk;\Þ; ð[;\Þ;
ðk; kÞ; ð[;¼Þ; ð[; kÞ; ð[; [Þ:

The possibility of all eight pairs can be illustrated on the

example of the following points from the above-described

2-D analog of special relativity relation; see Fig. 3. Here,

we take y ¼ ð�1; 0Þ; y ¼ ð1; 0Þ; and we show eight points x

that have eight possible pairs of i-relations (r-, r?)

between x and y and between x and y: Specifically, we

have two points x ¼ y and x ¼ y and six additional

points:

• the point x ¼ y that corresponds to (=, \);

• the point x ¼ y that corresponds to ([, =);

• the point x = (2, 0) that corresponds to ([, [);

• the point x = (1, c) that corresponds to ([, k);
• the point x = (0, 0) that corresponds to ([, \);

• the point x = (0, 2c) that corresponds to (k, k);
• the point x = (- 1, c) that corresponds to (k, \);

• the point x = (- 2, 0) that corresponds to (\, \).

Dashed lines describe ordering between the six addi-

tional points x.

One can see that the order presented on Fig. 3 is inverse

to the order presented on Fig. 2. The reason for this

inversion is that Fig. 2 and Fig. 3 describe different types

of orders:

• Fig. 2 describes orders between i-relations, while

• Fig. 3 describes orders between elements of the original

partially ordered set.

As a result:

Fig. 2 Order 	 between i-relations

Fig. 3 Eight points showing that all eight pairs of i-relations

p = (p-, p?) are possible: points x ¼ y and x ¼ y that correspond

to pairs (=, \) and ([, =), and six additional points

F. Zapata et al.
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• In Fig. 2, the relation \ is on top, because once x\y

(i.e., once the i-relation between x and y is\), then, due

to transitivity, we also have x\y; meaning that the

i-relation between x and y is also \.

• In Fig. 3, the pair ([, [) is on top, because for the

largest elements x, we have x [ y and x [ y and thus,

the corresponding pair of i-relations is p = (r-, r?) =

([, [).

Comparison between two non-degenerate intervals. We

would like to describe all possible i-relations between

intervals generated by i-relation between endpoints. In the

previous text, we have described all such i-relations for the

situations in which at least one of the intervals is degen-

erate. So, to complete our description, it is sufficient to

describe all possible i-relations between two non-degen-

erate intervals.

Specifically, we will use the above result about i-rela-

tions between a number and an interval to describe possible

i-relations between two non-degenerate intervals x; x½ � and

y; y
h i

: In this case, instead of two i-relations r- and r?, we

have four i-relations:

• the i-relation r-- between x and y;

• the i-relation r-? between x and y;

• the i-relation r?- between x and y; and

• the i-relation r?? between x and y:

Our objective is to describe possible combinations

(r--, r-?, r?-, r??) of such relations.

Each such combination can be represented as a pair

(p-, p?) of pairs p� ¼
def

r��; r�þð Þ and pþ ¼
def

rþ�; rþþð Þ:

• the pair p- describes the i-relations between the point x

and the (endpoints of the) interval y; y
h i

; and

• the pair p? describes the i-relations between the point x

and the (endpoints of the) interval y; y
h i

:

To come up with the desired description, let us introduce

the order � between possible pairs as in Fig. 4. This means

that the pair (\, \) precedes all other pairs, etc.

Proposition 3 Let X be a partially ordered set, and let

x\x; and y\y be elements of X. Then p� � pþ; where:

• p- is a pair of i-relations between x and yand between x

and y; and

• p? is a pair of i-relations between x and y and between

x and y:

Proposition 4 For a combination of i-relations

(r--, r-?, r?-, r??), the following two conditions are equi-

valent to each other:

• there exists a partially ordered set and values x\x and

y\y from this set for which:

• r-- is the i-relation between x and y;

• r-? is the i-relation between x and y;

• r?- is the i-relation between x and y; and

• r?? is the i-relation between x and y:

• the combination (r--, r-?, r?-, r??) is equal to one

of the following combinations:

ð\;\;\;\Þ; ð\;\;¼;\Þ; ð\;\; k;\Þ;
ð\;\; [;\Þ; ð\;\; k; kÞ; ð\;\; [;¼Þ;
ð\;\; [; kÞ; ð\;\; [; [Þ; ð¼;\; [;\Þ;
ð¼;\; [;¼Þ; ð¼;\; [; kÞ; ð¼;\; [; [Þ;
ðk;\; k;\Þ; ðk;\; [;\Þ; ðk;\; k; kÞ;
ðk;\; [;¼Þ; ðk;\; [; kÞ; ðk;\; [; [Þ;
ð[;\; [;\Þ; ð[;\; [;¼Þ; ð[;\; [; kÞ;
ð[;\; [; [Þ; ðk; k; k; kÞ; ðk; k; [; kÞ;
ðk; k; [; [Þ; ð[;¼; [; [Þ; ð[; k; [; kÞ;
ð[; k; [; [Þ; ð[; [; [; [Þ:

3 Possible orders between intervals generated by orders

between endpoints

It is desirable to describe all possible orders between

intervals generated by orders between endpoints. In addi-

tion to describing all possible i-relations between intervals,

we may also want to describe possible orders between

intervals generated by orders between endpoints—in a

Fig. 4 Order � between pairs p
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general partially ordered case. Specifically, we would like

to describe all i-relations that, in the degenerate case, when

each interval consists of a single element, reduce to the

order x B y between the elements.

Why this problem is non-trivial. At first glance, this

problem is simple, since we already have a full description

of all possible i-relations, so we can simply check which of

these i-relations describe order.

However, the situation is not as simple, because in

addition to the original ‘‘basic’’ i-relations, we can have

propositional combinations of these relations.

For example, the usual order x B y means

ðx\yÞ _ ðx ¼ yÞ:

Similarly, the strong order x� y means that we have one of

the following tuples (r--, r-?, r?-, r??):

ð\;\;\;\Þ; ð\;\;¼;\Þ; ð¼;\;¼;\Þ;
ð\;\;¼;¼Þ; or ð¼;¼;¼;¼Þ:

While the number of possible combinations is finite, it is

huge, and simply checking all these combinations is not

simple. Thus, instead of using the above classification, we

start ‘‘from scratch’’, and use a different approach.

Towards describing all possible orders between intervals

generated by orders between endpoints. In the interval case:

• instead of a single element x, we have two endpoints x

and x; and

• instead of a single element y, we have two endpoints y

and y:

Thus, instead of a single i-relation x B y, we have

2 9 2 = 4 possible i-relations: x� y; x� y; x� y; and

x� y:

In addition to these relations, we can also have propo-

sitional combinations of these i-relations, i.e., i-relations of

the type

x; x½ � � y; y
h i

, P x� y; x� y; x� y; x� y
� �

ð1Þ

for some propositional function P:{T, F}4? {T, F} that

transforms four truth values of the four i-relations into a

single truth value describing whether the intervals x; x½ � and

y; y
h i

are related.

Let us denote the truth value of the i-relation x� y

between:

• the upper endpoint x of the first interval and

• the lower endpoint y of the second interval

by t?-. Here:

• the first subscript ? means that we take the upper

endpoint of the first interval, and

• the second subscript - means that we take the lower

endpoint of the second interval.

Similarly:

• the i-relation x� y between the lower endpoints will be

denoted by t–;

• the i-relation x� y between the lower endpoint x of the

first interval and the upper endpoint y of the second

interval will be denoted by t-?, and

• the i-relation x� y between the upper endpoints will be

denoted by t??.

In these terms, the strong order relation x� y means that

P(t--, t-?, t?-, t??) = t?-, i.e., that x; x½ � � y; y
h i

if and

only if x� y: Similarly, the weak order relation

x � y & x � y corresponds to P(t--, t-?, t?-, t??) =

t– & t??.

It is important to mention that not all combinations of

truth values t--, t-?, t?-, and t?? are possible: since the

endpoints of each interval are related by the order, i.e.,

since x� x and y� y; some of the four i-relations between

endpoints imply each other. For example, by transitivity,

x� x and x� y imply that x� y: In general, we have the

implications pictured in Fig. 5.

Let us enumerate all possible combinations.

Proposition 5 For a combination

t ¼ ðt��; t�þ; tþ�; tþþÞ

of four truth values, the following two conditions are

equivalent to each other:

• there exists a partial ordered set and value x� x and

y� y from this set for which:

• t-- is the truth value of the relation x� y;

• t-? is the truth value of the relation x� y;

• t?- is the truth value of the relation x� y; and

• t?? is the truth value of the relation x� y;

• the combination t is equal to one of the following

combinations:

Fig. 5 Implications between truth values t±±
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ðT ; T; T ; TÞ; ðT; T ;F; TÞ; ðT ; T ;F;FÞ;
ðF; T ;F; TÞ; ðF; T ;F;FÞ; ðF;F;F;FÞ:

In the following text, the set of all possible combination

will be denoted by

S ¼ fðT; T ; T ;TÞ; ðT; T ;F; TÞ; ðT; T ;F;FÞ;
ðF; T;F; TÞ; ðF; T ;F;FÞ; ðF;F;F;FÞg:

Let us describe the general situation in precise terms.

Definition 2

• By a propositional formula, we mean a function

P : S ! fT ;Fg:
• Let X be a partially ordered set, and let P be a

propositional formula. By a relation corresponding to P

(or P-relation, for short), we mean the following

relation between intervals x; x½ � and y; y
h i

:

x; x½ � � P y; y
h i

, P x� y; x� y; x� y; x� y
� �

:

We want the resulting i-relation between intervals to

generalize the i-relation x B y between the elements: in the

degenerate case when x ¼ x ¼ x and y ¼ y ¼ y; the new

i-relation should transform into the i-relation x B y. In

other words:

• If x B y, then, in the degenerate case, all four

i-relations x� y; x� y; x� y; and x� y coincide with

x B y and are thus true. So, in this case, we should have

P(T, T, T, T) = T.

• Similarly, if x 6¼ y; then, in the degenerate case, all four

i-relations x� y; x� y; x� y; and x� y coincide with

x B y and are thus false. So, in this case, we should

have P(F, F, F, F) = F.

Definition 3 We say that a P-relation BP extends the

original order if the corresponding propositional formula

satisfies the condition

PðT ; T; T ; TÞ ¼ T and PðF;F;F;FÞ ¼ F:

According to Definition 3, the ideal case is when all four

i-relations x� y; x� y; x� y; and x� y are true. It may be

possible, however, that the two intervals are related by a

new interval i-relation B even when some of these

relations are false. It is reasonable to require the following.

• Suppose that we have x; x½ � � y; y
h i

for some case when

some of the four i-relations are true and some are false.

• Then, if we keep true i-relations true and make some

false i-relations true, we should have even fewer

reasons not to conclude that that x; x½ � � y; y
h i

:

• Thus, we should be able to conclude that in the new

situation, intervals are related.

In other words, if the formula P(t--, t-?, t?-, t??) is

true for some values tij, and we keep all the values tij = T

unchanged, but change some false values tij = F to T, then,

for the changed values t0ij, the formula P should still be

true.

Definition 4 We say that a P-relation B P is reasonable if

for every two sequences of truth values t--, t-?, t?-, t??

and t0��; t
0
�þ; t

0
þ�; t

0
þþ for which P(t--, t-?, t?-, t??) = T

and tij = T implies t0ij ¼ T for every i, j, we have

Pðt0��; t0�þ; t0þ�; t0þþÞ ¼ T :

This definition can be reformulated in more traditional

mathematical terms

Definition 5 Let F B T be an ordering on the set of truth

values. We say that a P-relation BP is monotonic if tij B t0ij
for all i, j imply that

Pðt��; t�þ; tþ�; tþþÞ�Pðt0��; t0�þ; t0þ�; t0þþÞ:

Proposition 6 A P-relation B P is reasonable (in the

sense of Definition 4) if and only if it is monotonic.

Finally, since we want to define an order, we want to

make sure that the relation (1) is transitive. The following

result describes all possible monotonic transitive P-rela-

tions that extend the original order.

Proposition 7 A P-relation B P is monotonic, transitive,

and extends the original order if and only if the corre-

sponding propositional formula P has one of the following

forms:

1. P(T, T, T, T) = T and P(t--, t-?, t?-, t??) = F for

all other tuples (t?-, t--, t??, t-?);

2. P(T, t-?, t?-, t??) = T and P(F, t-?, t?-, t??) = F

for all t-?, t?-, and t??;

3. P(t--, t-?, t?-, T) = T and P(t--, t-?, t-?, F) = F

for all t--, t-?, and t?-;

4. P(T, t-?, t?-, T) = T for all t?- and t-? and

P(t--, t-?, t?-, t??) = F for all other tuples.

As a result, we arrive at the following corollary:

Corollary 1 There are four and only four monotonic

transitive P-relations B P that extends the original order:

1. x� y (strong order);

2. x� y (ordering of lower endpoints);

3. x� y (ordering of upper endpoints);

4. x� y and x� y (weak order).
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Remaining open problem. In this section, we only

considered orders between intervals generated by orders

between endpoints, i.e., generated by the truth values of the

four ordering i-relations x� y; x� y; x� y; and x� y: In

principle, we can add equalities to this list of i-relations, in

which case we can have additional orders, such as x\y _
ðx ¼ y & x ¼ yÞ: It would be nice to describe all such

possible orders.3

4 First auxiliary topic: interval relations reformulated

in logical terms

It is worth mentioning that the four i-relations tij corre-

spond to different selection of quantifiers:

Proposition 8

x� y, 8x2 x;x½ �8y2 y;y½ �ðx� yÞ;

x� y, 9x2 x;x½ �8y2 y;y½ �ðx� yÞ;

x� y, 9y2 y;y½ �8x2 x;x½ �ðx� yÞ;

x� y, 9x2 x;x½ �9y2 y;y½ �ðx� yÞ:

5 Second auxiliary topic: extending interval graphs

to partially ordered sets

What is an interval graph. In many practical applications—

e.g., in scheduling, in bioinformatics—it is useful to con-

sider interval graphs, i.e., undirected graphs in which

vertices are real-line intervals, and two vertices are con-

nected by an edge if and only if the corresponding intervals

intersect; see, e.g., Cormen at al. (2009), Fishburn (1985),

Mandoiu and Zelikovsky (2008).

In precise terms, an undirected graph is defined as a pair

(V, E), where V is a set whose elements are called vertices,

and E is a set of unordered pairs of vertices (v, v0); such

pairs are called edges. A graph (V, E) is called an interval

graph if it is possible to put into correspondence, to every

vertex v 2 V; an interval I(v) so that the vertices v and v0

are connected by an edge ðv; v0Þ 2 E if and only if the

corresponding intervals have a non-empty intersection:

I(v) \ I(v0) = ;.
In view of the fact that the notion of an interval graph is

practically important, efficient algorithms have been

developed for checking whether a given graph can be

represented as such an interval graph.

Natural question. A natural question is: what if instead

of real-valued intervals, we allow intervals in a general

partially ordered set? It turns out that in this case, any

undirected graph can be represented as an intersection

graph of intervals:

Proposition 9 For every undirected graph (V, E), there

exists a poset (X, B) and a mapping I that maps v 2 V into

intervals IðvÞ � X so that vertices v and v0 are connected

by an edge if and only if corresponding intervals have a

non-empty intersection: I(v) \ I(v0) = ;.

It is worth mentioning that this result holds for infinite

graphs as well.

6 Proofs

Proof of Proposition 1 To prove this proposition, let us

consider all possible values of the i-relation r-: \, =, k,
and[.

1�. If r- is\, i.e., if x\y; then, since y� y; by transitivity, we

get x\y; i.e., r? is\. Thus, we have r� � rþ:
2�. If the i-relation r- is equality =, i.e., if x ¼ y; then,

since y� y; we have x� y; i.e., x\y or x ¼ y: In this case,

the i-relation r? is either \ or =. In both cases, r� � rþ:
3�. If r- is k, i.e., x k y; then it is impossible to have x� y:

Indeed, in this case, we would have x� y; while we have

x k y: Thus, the i-relation r? between x and y can only be k
or \. In both cases, we have r� � rþ:
4�. Finally, if r- is [, then r� � rþ for all possible

i-relations r?.

The proposition is proven. h

Proof of Proposition 2

1�. An example presented in the main text shows for each

of the eight pairs of i-relations (r-, r?) from the formu-

lation of this proposition, there exists a partially ordered set

and values x and y\y for which

xr�y and xrþy:

2�. So, to complete the proof, it is sufficient to prove that

for every partially ordered set and for all values x and y\y

from this set, the corresponding pair of i-relations (r-, r?)

is equal to one of the pairs listed in the formulation of the

Proposition.

To prove this, we will consider two possible cases: when

x is equal to one of the points y and y; and when x is

different from both these points.

2.1�. When x is equal to one of the points y or y; then, due

to y\y; we get pairs (=, \) and ([, =).

2.2�. When x is different from both points y and y; then for

each of these points, we have three possible i-relations with

x: \, [, and k. In principle, there are 3 9 3 = 9 possible

pairs, but the pairs

3 The authors are thankful to an anonymous referee for this

interesting suggestion.
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ðk; [Þ; ð\; [Þ; and ð\; kÞ

are impossible due to Proposition 1. Thus, we get exactly

one of the six remaining pairs – which are listed in the

formulation of the Proposition.

h

Proof of Proposition 3 We will prove that p� � pþ by

considering all possible pairs p-.

1�. Let us first consider the case when p- = ([, [), i.e.,

when x [ y and x [ y: Then, due to x [ x; we have x [ y

and x [ y; i.e., p? = ([, [). Thus, in this case, p� � pþ:
2�. For p- = ([, =), we have x [ y and x ¼ y: In this

case, from x [ x; we conclude that x [ y and x [ y; i.e.,

that p? = ([, [). Thus, p� � pþ:
3�. For p- = ([, k), we have x [ y and x k y: In this case,

from x [ x; we conclude that x [ y: We cannot have x� y;

because this would imply x\y while we have x k y: Thus,

we can have either x [ y or x k y; i.e., p? = ([, [) or

p? = ([, k). In both cases, p� � pþ:
4�. For p- = ([, \), we have x [ y and x\y: In this case,

from x [ x; we conclude that x [ y: Thus, p? is equal to

one of the pairs ([, r??): ([, [), ([, =), ([, \),

and ([, k). In all four cases, p� � pþ:
5�. For p- = (k, k), we have x k y and x k y: In this case,

similarly to Part 3 of this proof, each of the i-relations r?-

and r?? is equal to either [ or to k. If r?? is [, i.e., if

x [ y; then we have x [ y; and p? = ([, [). If

r?? = k, then we can have p? = (k, k) and p? = ([, k).
In all three cases, we have p� � pþ:
6�. For p- = (=, \), we have x ¼ y and x\y: In this case,

x\x implies that x [ y: Thus, p? is equal to one of the

pairs ([, r??): ([, [), ([, =), ([, \), and ([, k). In all

four cases, p� � pþ:
7�. For p- = (k, \), we have x k y and x\y: In this case,

we cannot have x� y; since then, due to x\x; we will have

x\y; while we have x k y: Thus, the first component r?-

of the pair p? = (r?-, r??) is either [ or k. For all such

pairs p?, we have p� ¼ ðk;\Þ � pþ:

8�. Finally, if p- = (\, \), then p� � pþ for all pairs p?.

The proposition is proven. h

Proof of Proposition 4

1�. Let us first prove that if there exists a partially ordered set

and values x\x and y\y; then the corresponding combina-

tion of i-relations (r--, r-?, r?-, r??) coincides with one of

the combinations listed in the formulation of the Proposition.

Indeed, due to Proposition 3, we must have p� � pþ:
In the formulation of the Proposition, we listed, for

each pair p-, all possible pairs p� � pþ; with two

exceptions: combinations (p-, p?) corresponding to

p- = p? = (=, \) and p- = p? = ([, =).

So, to prove the first implication, it is sufficient to prove

that these two combinations are impossible. Let us do it

case by case.

1.1�. If p- = (=, \), this means that x ¼ y: Since we

consider non-degenerate intervals, for which x\x; we

cannot have x ¼ y and thus, we cannot have

pþ ¼ ð¼;\Þ:

1.2�. Similarly, if p- = ([, =), this means that x ¼ x:

Since we consider non-degenerate intervals, for which

x\x; we cannot have x ¼ x and thus, we cannot have

pþ ¼ ð[;¼Þ:

The first implication is proven.

2�. To complete the proof of the Proposition, we must

prove that for every combination (p-, p?) listed in the

formulation, there exists a partially ordered set and values

x\x and y\y that lead to this very combination.

For combinations for which p-= p?, we can have, as

examples, points y ¼ ð�1; 0Þ\y ¼ ð1; 0Þ described after

the formulation of Proposition 2, and as the points x\x;

points from this description corresponding to pairs p- and

p? (recall that in that example, we have one point y for

each of the six pairs p = (r-, r?)).

For combinations for which p- = p?, we can take

nearby points x\x from the zone of all points x corre-

sponding to this pair p- = p?; see Fig. 6.

The statement is proven. h

Proof of Proposition 5

1�. Let us first prove that for every ordered set, the

corresponding combination of truth values coincides with

one of the six combinations listed in the formulation of the

proposition.

2�. Let us start our analysis with the truth value of the third

variable t?-. This value can take either the value T or the

value F. Let us consider these two values one by one.

3�. Let us first consider the case when t?- = T, i.e., the

case of combinations (t--, t-?, T, t??). In this case, x� y;

and so, due to the above implications, all three other

i-relations t--, t-?, and t?? are also true. Thus, we get

the combination (T, T, T, T).

4�. Let us now consider the case when t?- = F, i.e., the

case of combinations of the type (t--, t-?, F, t??).

Let us consider possible truth values of the first variable

t–, first the value T and then the value F.

5�. Let us consider combinations of the type

(T, t-?, F, t??), in which t-- = T. In such situations,

t-- = T implies that t-? = T, so the value of the second

variable t-? is always true.

The fourth variable t?? can be either true or false. Thus,

in this situation, we have two possible combinations:

(T, T, F, T) and (T, T, F, F).
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6�. Let us now consider situations of the type

(F, t-?, F, t??) in which not only t?- = F, but also

t-- = F. In such situations, the fourth variable t?? can

be either true or false. Let us consider these two cases one

by one.

6.1�. If t?? = T, then, by the above implications, we get

t-? = T. Thus, we get a combination (F, T, F, T).

6.2�. If t?? = F, then we can have two possible values of

t-?: true and false. Thus, we get two possible combina-

tions: (F, T, F, F) and (F, F, F, F).

7�. We have proven for all partially ordered sets, the

combination of truth values coincides with one of the six

given combinations. To complete the proof, it is sufficient to

prove that all six combinations are indeed possible. Indeed:

7.1�. The combination (T, T, T, T) occurs, e.g., for x; x½ � ¼
0; 1½ � and y; y

h i

¼ 2; 3½ �:
7.2�. The combination (T, T, F, T) occurs, e.g., for x; x½ � ¼
0; 2½ � and y; y

h i

¼ 1; 3½ �:
7.3�. The combination (T, T, F, F) occurs, e.g., for x; x½ � ¼
0; 3½ � and y; y

h i

¼ 1; 2½ �:
7.4�. The combination (F, T, F, T) occurs, e.g., for x; x½ � ¼
1; 2½ � and y; y

h i

¼ 0; 3½ �:
7.5�. The combination (F, T, F, F) occurs, e.g., for x; x½ � ¼
1; 3½ � and y; y

h i

¼ 0; 2½ �:
7.6�. The combination (F, F, F, F) occurs, e.g., for x; x½ � ¼
2; 3½ � and y; y

h i

¼ 0; 1½ �: h

Proof of Proposition 6

1�. Let us first prove that if the P-relation BP is reasonable,

then it is monotonic. Let us assume that tij B tij
0

for all

i, j, and let us prove that

Pðt��; t�þ; tþ�; tþþÞ�Pðt0��; t0�þ; t0þ�; t0þþÞ:

Our proof depends on the truth value of P(t--, t-?, t?-, t??).

1.1�. Let us first consider the case when

Pðt��; t�þ; tþ�; tþþÞ ¼ F:

By definition of the order B on the set of truth values,

the false value F is smaller than or equal to anything. Thus,

in this case, the desired inequality

Pðt��; t�þ; tþ�; tþþÞ�Pðt0��; t0�þ; t0þ�; t0þþÞ

is indeed satisfied.

1.2�. Let us now consider the case when

Pðt��; t�þ; tþ�; tþþÞ ¼ T :

In this case, if tij = T, then, by definition of the

order B on the set of truth values, the inequality tij� t0ij
implies that t0ij ¼ T: Thus, due to the fact that the

P-relation is reasonable, we get Pðt0��; t0�þ; t0þ�; t0þþÞ ¼ T

and thus,

Pðt��; t�þ; tþ�; tþþÞ�Pðt0��; t0�þ; t0þ�; t0þþÞ:

2�. Let us now prove that if the P-relation P is monotonic,

then it is reasonable. Indeed, let us make the following two

assumptions:

• let us assume that P is monotonic, i.e., that tij� t0ij:

implies that

Pðt��; t�þ; tþ�; tþþÞ�Pðt0��; t0�þ; t0þ�; t0þþÞ;

and

• let us also assume that for every i, j, tij = T implies

that tij
0

= T.

Let us prove that in this case, we have

Pðt0��; t0�þ; t
0
þ�; t

0
þþÞ ¼ T :

To prove this, let us first prove that tij� t0ij for all i, j.

Indeed, if tij = F, then this inequality is satisfied because the

false value F is smaller than or equal to anything. If

tij = T, then, by our assumption, we have t0ij ¼ T: and thus,

tij� t0ij: Since tij� t0ij: for all i, j, by monotonicity, we get

Pðt��; t�þ; tþ�; tþþÞ�Pðt0��; t0�þ; t0þ�; t0þþÞ:

Due to P(t--, t-?, t?-, t??) = T, this implies that

Pðt0��; t0�þ; t
0
þ�; t

0
þþÞ ¼ T . The statement is proven, and so

is the proposition. h

Proof of Proposition 7

1�. To describe a P-relation, we need to describe the

propositional formula P, i.e., we need to describe the valuesFig. 6 Combinations corresponding to p- = p?
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of the function P on all six tuples from the set S: We know,

from the fact that the P-relation B P extends the original

order, that P(T, T, T, T) = T and P(F, F, F, F) = F. So,

to complete our description, it is sufficient to describe

four remaining values: P(F, T, T, T), P(T, T, F, F),

P(F, T, F, T), and P(F, T, F, F).

2�. Let us prove, by contradiction, that

PðF; T ;F;FÞ ¼ F:

Indeed, if we had P(F, T, F, F) = T, then we would

have 0; 2½ � � �3; 1½ �: Indeed, in this case, out of four

possible i-relations tij, only the i-relation t-? (0 B 1) is

true. Thus, the corresponding tuple is (F, T, F, F), and so,

0; 2½ � � �3; 1½ � , PðF; T;F;FÞ ¼ T :

Similarly, we conclude that �3; 1½ � � �2;�1½ �: So, by

transitivity, we would have 0; 2½ � � �2;�1½ �:
However, for the intervals 0; 2½ � and �2;�1½ �; all four

i-relations are false, so we have P(F, F, F, F) = F and

0; 2½ � � �2;�1½ � , PðF;F;F;FÞ ¼ F;

and thus, 0; 2½ �£ �2;�1½ �: The contradiction shows that

our assumption P(F, T, F, F) = T is false, and thus,

P(F, T, F, F) = F.

3�. Because of Part 2 of this proof, to describe a desired P-

relation, it is sufficient to describe three remaining values:

P(T, T, F, T), P(T, T, F, F), and P(F, T, F, T).

Let us start with describing the last two values

P(T, T, F, F) and P(F, T, F, T). Each of these values can

be either true or false, so, in principle, we have four pos-

sible combinations of these values: (T, T), (T, F),

(F, T), and (F, F). Let us consider these combinations one

by one.

3.1�. Let us first consider the case when P(T, T, F, F) = T

and P(F, T, F, T) = T. We will prove that this case is

impossible.

Indeed, in this case, the condition P(T, T, F, F) = T

implies that 0; 3½ � � 1; 1½ �; and the condition P(F, T, F, T) =

T implies that 1; 1½ � � �1; 2½ �: Thus, by transitivity, we

would conclude that 0; 3½ � � �1; 2½ �: However, for the

intervals 0; 3½ � and �1; 2½ �; all four i-relations are false,

so due to P(F, F, F, F) = F, we should get 0; 3½ �£
�1; 2½ �: This contradiction shows that this case is indeed

impossible.

3.2�. Let us now consider the case when P(T, T, F, F) = T

and P(F, T, F, T) = F. In this case, due to monotonicity,

we get P(T, T, F, T) = T. The corresponding function P is

thus fully defined. One can easily see that the corre-

sponding P-relation

x; x½ � � y; y
h i

, P x� y; x� y; x� y; x� y
� �

corresponds to ordering of lower endpoints.

3.3�. Similarly, when P(T, T, F, F) = F and P(F, T, F, T) =

T, due to monotonicity, we get P(T, T, F, T) = T. The

corresponding function P is thus fully defined. One can

easily see that the corresponding relation

x; x½ � � y; y
h i

, P x� y; x� y; x� y; x� y
� �

corresponds to ordering of upper endpoints.

3.4�. The only remaining case is the case when

P(T, T, F, F) = P(F, T, F, T) = F. In this case, the only

value that we still need to define is the value P(T, T, F, T).

This value can be either true or false. One can see

that:

• when P(T, T, F, T) = T, we get the weak order; and

• when P(T, T, F, T) = F, we get the strong order.

The proposition is proven. h

Proof of Proposition 8

1�. Let us first prove that x� y if and only if x B y for all

x 2 x; x½ � and for all y 2 y; y
h i

:

1.1�. If x� y; then for every x 2 x; x½ � and for every y 2

y; y
h i

; we have x� x� y� y: Thus, by transitivity, we get

x B y.

1.2�. Vice versa, if we have x B y for all x 2 x; x½ � and for

all y 2 y; y
h i

; then, in particular, this inequality is true for

x ¼ x 2 x; x½ � and y 2 y; y
h i

: Thus, we get x� y:

2�. Let us now prove that x� y if and only if there exists an

x 2 x; x½ � for which x B y for all y 2 y; y
h i

:

2.1�. If x� y; then for x ¼ x and for all y 2 y; y
h i

; we have

x� y� y and thus, by transitivity, x B y. Thus, there exists

an x 2 x; x½ � (namely, x ¼ x) for which x B y for all

y 2 y; y
h i

:

2.2�. Vice versa, let us assume that there exists an x 2 x; x½ �
for which x B y for all y 2 y; y

h i

: In particular, this is true

for y ¼ y 2 y; y
h i

: Thus, we get x� y: Since x 2 x; x½ �; we

conclude that x� x and thus, by transitivity, we get x� y:

3�. Let us prove that x� y if and only if there exists an

y 2 y; y
h i

for which x B y for all x 2 x; x½ �:
3.1�. If x� y; then for y ¼ y and for all x 2 x; x½ �; we have

x� x� y and thus, by transitivity, x B y. Thus, there exists

a y 2 y; y
h i

(namely, y ¼ x) for which x B y for all

x 2 x; x½ �:
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3.2�. Vice versa, let us assume that there exists a y 2 y; y
h i

for which x B y for all x 2 x; x½ �: In particular, this is true

for x ¼ x 2 x; x½ �: Thus, we get x� y: Since y 2 y; y
h i

;

we conclude that y� y and thus, by transitivity, we get

x� y:

4�. Finally, let us prove that x� y if and only if there exists

an x 2 x; x½ � and a y 2 y; y
h i

for which x B y.

4.1�. If x� y; then the inequality x B y holds for x ¼ x and

for y ¼ y: Thus, there exist an x 2 x; x½ � (namely, x ¼ x)

and a y 2 y; y
h i

(namely, y ¼ y) for which x B y.

4.2�. Vice versa, let us assume that there exist x 2 x; x½ � and

y 2 y; y
h i

for which x B y. Then, from x� x; x B y, and

y� y; by transitivity, we get x� y: h

Proof of Proposition 9 In a (undirected) graph, an edge

connecting a vertex v with a vertex v0 can be identified with

the 2-element set {v, v0}. As the poset X, let us take the

union X = E [ (V 9 {-, ? }) of the set E of all the edges

and the set of all the pairs (v, -) and (v, ?). On this set,

we define the following partial order: x B x for all x [ X

plus the following relations:

• we require that (v, -) \ (v, ?) for all v;

• for each edge {v, v0} [ E, we require that

ðv;�Þ\ðv; v0Þ\ðv;þÞ;

ðv0;�Þ\ðv; v0Þ\ðv0;þÞ;

ðv;�Þ\ðv0;þÞ; and ðv0;�Þ\ðv;þÞ:

One can check that this relation is transitive and asym-

metric, and is, thus, a partial order.

To each element v 2 V ; we put into correspondence an

interval IðvÞ ¼ ðv;�Þ; ðv;þÞ½ �: By definition of our order,

the intervals I(v) and I(v0), v = v0, have a non-empty

intersection if and only if fv; v0g 2 E; i.e., if and only if the

vertices v and v0 are connected by an edge in the original

graph.

The statement is proven. h

Example 1 Let us illustrate this construction on the

example of a simple fully connected graph with three

vertices v1, v2, and v3 described in Fig. 7.

In this case, the corresponding partially ordered set has

the form described in Fig. 8.
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